DERS BİLGİLERİ
Ders Kodu Yarıyıl Ders Süresi Kredi AKTS
Grup Takdimleri I MT   518 2 3 3 6

Ön Koşul Dersleri
Ders Hakkında Önerilen Diğer Hususlar None

Dersin Dili Türkçe
Dersin Seviyesi Doktora
Dersin Türü Seçmeli
Dersin Koordinatörü Prof.Dr. Hayrullah AYIK
Dersi Verenler
 
Dersin Yardımcıları
Dersin Amacı
Bu dersin amacı öğrencilere serbest grupları ve temel özelliklerini ve bazı temel grup takdimlerini kavratmaktır.
Dersin İçeriği
Bu derste Serbest gruplar, Schreier yöntemi, Nielsen yöntemi, grupların serbest takdimleri, bazı özel gruplar, Kuaternionlar, Heisenberg grubu, simetric gruplar, yarı-direkt çarpım grubu, sonlu doğurulmuş değişmeli gruplar ve koset sayma tekniği anlatılmaktadır.

Dersin Öğrenme Kazanımları
1) Serbest grupları kavrar.
2) Schreier metodunu kavrar
3) Nielsen metodunu kavrar
4) Grupların serbest takdimlerini kavrar
5) Kuaternionlar ve Heisenberg grubunu kavrar.
6) Simetric grupları kavrar.
7) Sonlu doğuraylı değişmeli grupları kavrar
8) Koset sayma tekniğini kavrar.
9)
10)
11)
12)
13)
14)
15)


DERSİN PROGRAM KAZANIMLARINA KATKISI
NoTemel öğrenme KazanımlarıKatkı Düzeyi
12345
1
Matematiğin özel bir alanında daha önce yapılmış olan araştırmaların sonuçlarını bilir.
2
Sahip olduğu uzmanlık alanındaki sonuçların matematiğin diğer alanları ile ilişkisini ayrıntıları ile bilir.
3
Uzmanlık alanında edindiği bilgiler yardımıyla yeni matematiksel modeller kurar.
4
Matematiğin her alanında temel düzeyde bilgi birikimine sahiptir.
5
Matematiğin farklı alanlarında edindiği bilgileri birbirleriyle ilişkilerini en sade ve anlaşılır bir biçimde sunar.
6
Matematiğin ifade edilmesinde ihtiyaç duyulan teknik donanımları etkin bir biçimde kullanır.
7
Alanı ile ilgili konuda orijinal problemler kurar ve değişik çözüm teknikleri sunar.
8
Alanı ile ilgili konuda özgün ve nitelikli bilimsel çalışmalar yapar.
9
Mevcut matematik kuramlarını analiz eder ve yeni kuramlar geliştirir.
10
Matematiğin uzmanlık gerektiren alanlarındaki öğrenme-öğretme tekniklerini bilir ve bu teknikleri eğitim-öğretimin her aşamasında etkin olarak kullanır.
11
Alanı ile ilgili yabancı kaynakları takip edebilecek ve yabancı paydaşları ile sözlü ve yazılı iletişim kurabilecek düzeyde yabancı dil bilgisine sahip olmak.
12
Yapmış olduğu özgün çalışmaları paydaşlarının da yararlanması amacıyla bilimsel etik kurallar çerçevesinde sunar ve yayınlar.
13
Sahip olduğu bilimsel ünvanın gerektirdiği etik kurallara bağlı kalır

DERS AKIŞI
HaftaKonularÖn Hazırlık Yöntem
1 Serbest gruplar Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
2 Schreier metodu Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
3 Nielsen metodu Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
4 Grupların serbest takdimleri Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
Problem Çözme
5 Direkt çarpımlar Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
6 Tietze dönüşümleri Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
7 Van Kampen diyagramları Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Problem Çözme
8 Ara Sınav Tekrar ve problem çözme Yazılı Sınav
9 Bazı iyi bilinen gruplar Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
10 Kuaternionlar ve Heisenberg grupları Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
11 Yarı-direkt çarpım Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
12 Simetrik gruplar Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
Problem Çözme
13 Sonlu doğuraylı değişmeli gruplar Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
14 Koset sayma Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Soru-Cevap
Problem Çözme
15 İyileştirilmiş koset sayma tekniği Kaynaklardaki ilgili sayfaların gözden geçirilmesi Anlatım
Problem Çözme
16-17 Yarıyıl Sonu Sınavları Tekrar ve problem çözme Yazılı Sınav

KAYNAKLAR
Ders Notu
Diğer Kaynaklar