ISB462 Biostatistics

5 ECTS - 3-0 Duration (T+A)- 8. Semester- 3 National Credit

Information

Code ISB462
Name Biostatistics
Term 2022-2023 Academic Year
Semester 8. Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. MAHMUDE REVAN ÖZKALE
Course Instructor Prof. Dr. MAHMUDE REVAN ÖZKALE (A Group) (Ins. in Charge)


Course Goal / Objective

Statistical modeling and interpeting the econometric data

Course Content

Multiple linear regression model, heteroscedasticity, multicollineairt problem, dummy variable models, distributed lag models

Course Precondition

none

Resources

Gujarati, D. N. (çev. Şenesen, Ü., Şenesen, G. G.) (1999), Temel Ekonometri. Literatür Yayıncılık

Notes

Koutsoyiannis, A. (çev. Şenesen, Ü., Şenesen, G. G.) (1989), Ekonometri Kuramı. Verso Yayıncılık


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Describe econometrics and econometric model
LO02 Check the validity of the assumptions
LO03 Use appropriate methods in case of deviation from the model assumptions
LO04 Distinguish appropriate estimation methods of models
LO05 Select the correct model that fits the data for statistical analysis
LO06 Comment on the results obtained using the statistical package programs
LO07 Evaluate the results of analysis
LO08 Explain the difference between the models


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain the essence fundamentals and concepts in the field of Probability, Statistics and Mathematics 2
PLO02 Bilgi - Kuramsal, Olgusal Emphasize the importance of Statistics in life 5
PLO03 Bilgi - Kuramsal, Olgusal Define basic principles and concepts in the field of Law and Economics
PLO04 Bilgi - Kuramsal, Olgusal Produce numeric and statistical solutions in order to overcome the problems 4
PLO05 Bilgi - Kuramsal, Olgusal Use proper methods and techniques to gather and/or to arrange the data 5
PLO06 Bilgi - Kuramsal, Olgusal Utilize computer systems and softwares 2
PLO07 Bilgi - Kuramsal, Olgusal Construct the model, solve and interpret the results by using mathematical and statistical tehniques for the problems that include random events 5
PLO08 Bilgi - Kuramsal, Olgusal Apply the statistical analyze methods 5
PLO09 Bilgi - Kuramsal, Olgusal Make statistical inference(estimation, hypothesis tests etc.) 4
PLO10 Bilgi - Kuramsal, Olgusal Generate solutions for the problems in other disciplines by using statistical techniques 4
PLO11 Bilgi - Kuramsal, Olgusal Discover the visual, database and web programming techniques and posses the ability of writing programme 1
PLO12 Bilgi - Kuramsal, Olgusal Construct a model and analyze it by using statistical packages 4
PLO13 Beceriler - Bilişsel, Uygulamalı Distinguish the difference between the statistical methods 4
PLO14 Beceriler - Bilişsel, Uygulamalı Be aware of the interaction between the disciplines related to statistics 3
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Make oral and visual presentation for the results of statistical methods 2
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Have capability on effective and productive work in a group and individually 1
PLO17 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Professional development in accordance with their interests and abilities, as well as the scientific, cultural, artistic and social fields, constantly improve themselves by identifying training needs 1
PLO18 Yetkinlikler - Öğrenme Yetkinliği Develop scientific and ethical values in the fields of statistics-and scientific data collection 3


Week Plan

Week Topic Preparation Methods
1 Introduction to Econometrics, examination of the deviations from the assumptions of multiple regression analysis Source reading Öğretim Yöntemleri:
Anlatım
2 Investigate the properties of the estimators, hypothesis testing in multiple lnear regession model Source reading Öğretim Yöntemleri:
Anlatım
3 Confidence interval in multiple lnear regession model, matrix approximaitons to multiple linear regression model Source reading Öğretim Yöntemleri:
Anlatım
4 Multicollinearity problem (identification and correction of multicollinearity) Source reading Öğretim Yöntemleri:
Anlatım
5 Some biased estimators in the problem of multicollinearity Source reading Öğretim Yöntemleri:
Anlatım
6 Determination of heteroscedasticity, systematic and non-systematic tests (Goldfeld Quant, Park ve Glejser testsi) Source reading Öğretim Yöntemleri:
Anlatım
7 Breusch Pagan Godfrey test from systematic test and correction of heteroscedasticity Source reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Review the topics discussed in the lecture notes and sources Ölçme Yöntemleri:
Yazılı Sınav
9 Dummy variable models Source reading Öğretim Yöntemleri:
Anlatım
10 Dummy variable models, more than one dummy variable Source reading Öğretim Yöntemleri:
Anlatım
11 Qualitative dependent variable regression models (DOM and Logit models) Source reading Öğretim Yöntemleri:
Anlatım
12 Qualitative dependent variable regression models (Logit and Probit models) Source reading Öğretim Yöntemleri:
Anlatım
13 Distributed Lag models (estimation by least squares, Koyck model and Almon polynomial lag model) Source reading Öğretim Yöntemleri:
Anlatım
14 Distributed Lag models (estimation by Nerlove s partial adjustment model and Cagan s adptive expectation model) Source reading Öğretim Yöntemleri:
Anlatım
15 Autoregressive models Source reading Öğretim Yöntemleri:
Anlatım
16 Problem solutions Review the topics discussed in the lecture notes and sources Öğretim Yöntemleri:
Tartışma
17 Term Exams Review the topics discussed in the lecture notes and sources Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 18 18
Total Workload (Hour) 114
Total Workload / 25 (h) 4,56
ECTS 5 ECTS

Update Time: 18.11.2022 05:14