MEDF536 Radiation Protection and Radiation Safety

7 ECTS - 2-2 Duration (T+A)- . Semester- 3 National Credit

Information

Code MEDF536
Name Radiation Protection and Radiation Safety
Term 2023-2024 Academic Year
Term Spring
Duration (T+A) 2-2 (T-A) (17 Week)
ECTS 7 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator
Course Instructor
1


Course Goal / Objective

1Radiation Protection and Radiation Safety

Course Content

Radiation Protection and Radiation Safety

Course Precondition

None

Resources

Lecture notes (For Medical Faculty Students - İsmail Günay) Biophysics (Ferit Pehlivan) Biophysics (Gürbüz Çelebi) Internet Search

Notes

Internet Research


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Course Outcome
LO02 1Course Outcome
LO03 2Course Outcome
LO04 3Course Outcome
LO05 4Course Outcome
LO06 5Course Outcome


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Belirsiz List and explain the functions of health organizations; explains how national and international health institutions are organized; explains how clinics are managed. 3
PLO02 Belirsiz Explains the technical infrastructure required for qualified service in the future of Medical Physics.
PLO03 Belirsiz Explains the European Community and national legal frameworks, regulations, guides and codes of practice related to the subject of Medical Physics. 2
PLO04 Belirsiz Uses physical concepts, principles and theories in detail and numerically to explain structure, function, characteristics and limitations in fields covering Medical Physics; explains the use of medical devices in the field of medical physics. 3
PLO05 Belirsiz Explains the properties of ionizing radiation (electromagnetic, electrons, ions, neutrons) and other physical agents (electric energy, static electricity/magnetic fields, non-ionizing electromagnetic radiation, vibration, sound and ultrasound, laser) in detail and quantitatively.
PLO06 Belirsiz Explains the beneficial and adverse/harmful biological effects of ionizing radiation and different physical agents associated with medical devices numerically with biological models. Explain the factors affecting the magnitude of the biological effect. Explains ways of manipulation to improve clinical outcomes. 3
PLO07 Belirsiz Explain deterministic/stochastic, early/late, teratogenic/genetic effects for each physical agent. 1
PLO08 Belirsiz Makes a list from the literature on General Physics, Medical Physics and Health Physics in order to systematically review something in the field of Medical Physics practice.
PLO09 Belirsiz Applies the general concepts, principles and theories of physics to clinical problems related to the clinical use of medical devices, safety/risk management related to ionizing radiation. 2
PLO10 Belirsiz It uses the general concepts, principles and theories of physics to transfer new devices and related techniques to the clinical environment.
PLO11 Belirsiz It uses statistical packages for the analysis of clinical and biomedical data. 2
PLO12 Belirsiz Defines and explains the various dosimetric quantities used; explains the relationship between dosimetric quantities (energy flux, kerma, absorbed dose). 3
PLO13 Belirsiz Designs clinical and biomedical studies that are numerical and based on a rigorous statistical base.
PLO14 Belirsiz Determines the method during the delivery of ionizing radiation to the patient and designs different applications to improve this method. 1


Week Plan

Week Topic Preparation Methods
1 course week Student reads the related section before class
2 2course week 2Student reads the related section before class
3 2c ourse w eek 2Student reads the related section before class
4 3c ourse w eek 3Student reads the related section before class
5 4c o u rse w eek 4Student reads the related section before class
6 5c o urse w e ek 5Student reads the related section before class
7 6c o urse w e ek 6Student reads the related section before class
8 Mid-Term Exam Mid-Term Exam
9 7c o u r se w eek 7Student reads the related section before class
10 8c ou rse w e e k 8Student reads the related section before class
11 9c ou rse we ek 9Student reads the related section before class
12 10c ou rse w ee k 10Student reads the related section before class
13 11c ou rse w e ek 11Student reads the related section before class
14 12c o ur se w e e k 12Student reads the related section before class
15 13 c ou rse w ee k 13Student reads the related section before class
16 Term Exams Term Exams
17 Term Exams Term Exams


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 6 84
Assesment Related Works
Homeworks, Projects, Others 1 9 9
Mid-term Exams (Written, Oral, etc.) 1 8 8
Final Exam 1 16 16
Total Workload (Hour) 173
Total Workload / 25 (h) 6,92
ECTS 7 ECTS

Update Time: 11.09.2023 02:06