IEM1809 Multivariate Statistical Analysis 1

8 ECTS - 4-0 Duration (T+A)- . Semester- 4 National Credit

Information

Code IEM1809
Name Multivariate Statistical Analysis 1
Term 2023-2024 Academic Year
Term Fall and Spring
Duration (T+A) 4-0 (T-A) (17 Week)
ECTS 8 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. EBRU ÖZGÜR GÜLER
Course Instructor
1


Course Goal / Objective

The aim of this course is to bring the knowledge of multivariate analysis with theoretical perspective and application with SPSS for analyzed, interpreted.

Course Content

The course content covers the intrroducing of multivariate data matrix and some multivariate techniques which are factor analysis, canonical correlation, clustering and discriminant analysis.

Course Precondition

None

Resources

Applied Multivariate Statistical Analysis, R.A. Johnson and D.W. Wichern, Pearson

Notes

The student can use scientific articles that can be found online once the theoritical background is completed


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains multivariate data matrix
LO02 Builds multivariate data matrix
LO03 Explains dimension reduction techniques assumptions
LO04 Knows dimension reduction techniques
LO05 Knows classificaions methods a
LO06 Explains classificaions methods assumptions
LO07 Discriminates the most proper analysis technique for the data being analyzed
LO08 Uses SPSS package program to analyze each technique
LO09 Appropriately interprets findings of analysis


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Identify an econometric problem and propose a new solution to it 2
PLO02 Bilgi - Kuramsal, Olgusal Develops new knowledge using current concepts in Econometrics, Statistics and Operations Research 3
PLO03 Bilgi - Kuramsal, Olgusal Explain for what purpose and how econometric methods are applied to other fields and disciplines
PLO04 Beceriler - Bilişsel, Uygulamalı Using her knowledge, brings original solutions to problems in Economics, Business Administration and other social sciences 4
PLO05 Beceriler - Bilişsel, Uygulamalı Creates a new model using mathematics, statistics and econometrics knowledge to solve the problem encountered 4
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 5
PLO07 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 4
PLO08 Beceriler - Bilişsel, Uygulamalı Collects data on purpose 4
PLO09 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field that does not research 3
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 4
PLO11 Beceriler - Bilişsel, Uygulamalı Converts its findings into a master's thesis or a professional report in Turkish or a foreign language 3
PLO12 Beceriler - Bilişsel, Uygulamalı It researches current approaches and methods to solve the problems it encounters and proposes new solutions 5
PLO13 Beceriler - Bilişsel, Uygulamalı Develops long-term plans and strategies using econometric and statistical methods 1
PLO14 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs self-study using knowledge of Econometrics, Statistics and Operations to solve a problem 3
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads the team by taking responsibility 3
PLO16 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study
PLO17 Yetkinlikler - İletişim ve Sosyal Yetkinlik Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Uses a package program of Econometrics, Statistics, and Operation Research or writes a new code 3
PLO19 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values
PLO21 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues 4


Week Plan

Week Topic Preparation Methods
1 Motivation: A Review of references and introductory matrix algebra No more preparations required Öğretim Yöntemleri:
Anlatım
2 Building data matrix for multivariate analysis and the descriptive statistics Related chapters of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Örnek Olay
3 Preparing data: examination of outliers and missing data, some distance and similiarity measures Related chapters of reference books Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Örnek Olay, Problem Çözme
4 Dimension Reduction: Factor analysis and its assumptions Related chapters of reference books Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma
5 An applications of Factor analysis in SPSS Computer applications Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Gösterip Yaptırma
6 Research and discussion of articles based on factor analysis in literature Internet databases Öğretim Yöntemleri:
Tartışma, Örnek Olay, Bireysel Çalışma, Problem Çözme
7 Canonical correlations, its assumptions and applications in SPSS Related chapters of reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap
8 Mid-Term Exam Review of topics Ölçme Yöntemleri:
Proje / Tasarım, Performans Değerlendirmesi
9 Research and discussion of articles based on canonical correlations in literature Internet databases Öğretim Yöntemleri:
Tartışma, Örnek Olay, Bireysel Çalışma, Problem Çözme
10 Classification: Clustering analysis, its assumptions and sort of clustering methods Related chapters of reference books Öğretim Yöntemleri:
Anlatım, Tartışma
11 An applications of Hiyerarchical and Non Hiyerarchical cluster analysis in SPSS Computer applications Öğretim Yöntemleri:
Alıştırma ve Uygulama
12 Research and discussion of articles based on cluster analysis in literature Internet databases Öğretim Yöntemleri:
Tartışma, Örnek Olay, Bireysel Çalışma, Problem Çözme
13 Classification: Clustering analysis and its assumptions Related chapters of reference books Öğretim Yöntemleri:
Anlatım
14 An applications of Discriminant analysis in SPSS Computer applications Öğretim Yöntemleri:
Alıştırma ve Uygulama
15 Research and discussion of articles based on Discriminant analysis in literature Internet databases Öğretim Yöntemleri:
Tartışma, Örnek Olay, Bireysel Çalışma, Problem Çözme
16 Term Exams Review of topics Ölçme Yöntemleri:
Ödev, Proje / Tasarım, Performans Değerlendirmesi
17 Term Exams Review of topics Ölçme Yöntemleri:
Ödev, Proje / Tasarım, Performans Değerlendirmesi


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 8 112
Assesment Related Works
Homeworks, Projects, Others 2 4 8
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 24 24
Total Workload (Hour) 212
Total Workload / 25 (h) 8,48
ECTS 8 ECTS

Update Time: 11.05.2023 04:56