UA0028 Remote sensingand Image Interpretation II

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Code UA0028
Name Remote sensingand Image Interpretation II
Term 2023-2024 Academic Year
Semester . Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator


Course Goal / Objective

to teach the formation of digital images and operations with digital images

Course Content

Remote sensing concepts, basics of remote sensing, digital image formation, resolution types, digital image enhancement methods

Course Precondition

None

Resources

remote sensing and image interpretation; Lilesand and Kiefer

Notes

lecture notes


Course Learning Outcomes

Order Course Learning Outcomes
LO01 applies mathematical operations to a digital image
LO02 comprehend the formation of digital image
LO03 applies image enhancement operations
LO04 Understands classification techniques
LO05 makes object-based classification
LO06 makes classification based on neural network


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory 3
PLO02 Bilgi - Kuramsal, Olgusal The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data 5
PLO03 Bilgi - Kuramsal, Olgusal The students generate information using remotely sensed data and GIS together with database management skills.
PLO04 Bilgi - Kuramsal, Olgusal The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data. 3
PLO05 Bilgi - Kuramsal, Olgusal The students gain knowledge to use current data and methods for multi-disciplinary research 5
PLO06 Bilgi - Kuramsal, Olgusal The students gain technical competence and skills in using recent GIS and remote sensing software
PLO07 Bilgi - Kuramsal, Olgusal The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines.
PLO08 Yetkinlikler - Öğrenme Yetkinliği Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data.
PLO09 Yetkinlikler - Öğrenme Yetkinliği Students can generate data for GIS projects using Remote Sensing techniques.
PLO10 Bilgi - Kuramsal, Olgusal Gains the ability to analyze and interpret geographic data with GIS techniques
PLO11 Bilgi - Kuramsal, Olgusal Gains the ability of problem solving, solving, solution oriented application development
PLO12 Yetkinlikler - Öğrenme Yetkinliği Acquires the ability to acquire, evaluate, record and apply information from satellite data 5


Week Plan

Week Topic Preparation Methods
1 The basic principles of remote sensing no need any preperation Öğretim Yöntemleri:
Tartışma
2 basic concepts of remote sensing no need any preperation Öğretim Yöntemleri:
Anlatım
3 scanner systems and image formation in remote sensing topic repetition Öğretim Yöntemleri:
Anlatım
4 digital image concept and basic mathematical operations-I topic repetition Öğretim Yöntemleri:
Anlatım
5 digital image concept and basic mathematical operations-II topic repetition Öğretim Yöntemleri:
Anlatım
6 image enhancement topic repetition Öğretim Yöntemleri:
Anlatım
7 contrast and spatial operations topic repetition Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam general topic repetition Ölçme Yöntemleri:
Ödev
9 classification topic repetition Öğretim Yöntemleri:
Anlatım
10 classification in digital images topic repetition Öğretim Yöntemleri:
Anlatım
11 object-based classification topic repetition Öğretim Yöntemleri:
Anlatım
12 neural network topic repetition Öğretim Yöntemleri:
Anlatım
13 neural network classification topic repetition Öğretim Yöntemleri:
Anlatım
14 change detection topic repetition Öğretim Yöntemleri:
Anlatım
15 Image time series analysis topic repetition Öğretim Yöntemleri:
Anlatım
16 Term Exams general topic repetition Ölçme Yöntemleri:
Ödev
17 Term Exams general topic repetition Ölçme Yöntemleri:
Ödev


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 30 30
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 11.05.2023 03:58