IEM1822 Dynamic Panel Data Models II

8 ECTS - 4-0 Duration (T+A)- . Semester- 4 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (PhD)
Code IEM1822
Name Dynamic Panel Data Models II
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 4-0 (T-A) (17 Week)
ECTS 8 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. KENAN LOPCU
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The objective of this course is to internalize panel unit root and panel cointegration topics, analyze panel error correction models and pooled mean group estimators, understand panel data modeling under small T, bias and its solution, and apply these concepts in practice.

Course Content

In this course, the fundamentals of panel data and a review of panel unit root and panel cointegration topics are covered; panel error correction models, pooled mean group estimators, and the introduction of bias and its solution in panel data modeling under small T are discussed.

Course Precondition

At least two econometrics courses at the graduate level.

Resources

Baum, C. F. (2020). Dynamic panel data models. SAGE Publications Limited.

Notes

Yerdelen Tatoğlu, F. (2024). Panel zaman serileri analizi. Beta Yayınevi.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Understands the fundemantals of panel data analysis
LO02 Apply the panel unit root tests
LO03 Do the analysis of panel cointegration
LO04 Evaluates the results of panel data analysis.
LO05 Do the dynamic panel data analysis
LO06 Applies panel error correction models.
LO07 Uses pooled mean group estimators.
LO08 Performs panel data modeling under small T.
LO09 Explains bias and solution methods in panel data analysis.
LO10 Compares different methods used in panel data analysis.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Identify an econometric problem and propose a new solution to it 5
PLO02 Bilgi - Kuramsal, Olgusal Develops new knowledge using current concepts in Econometrics, Statistics and Operations Research 4
PLO03 Bilgi - Kuramsal, Olgusal Explain for what purpose and how econometric methods are applied to other fields and disciplines 5
PLO04 Beceriler - Bilişsel, Uygulamalı Using her knowledge, brings original solutions to problems in Economics, Business Administration and other social sciences 4
PLO05 Beceriler - Bilişsel, Uygulamalı Creates a new model using mathematics, statistics and econometrics knowledge to solve the problem encountered 5
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 5
PLO07 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 5
PLO08 Beceriler - Bilişsel, Uygulamalı Collects data on purpose 4
PLO09 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research 3
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 5
PLO11 Beceriler - Bilişsel, Uygulamalı Converts its findings into a master's thesis or a professional report in Turkish or a foreign language
PLO12 Beceriler - Bilişsel, Uygulamalı It researches current approaches and methods to solve the problems it encounters and proposes new solutions 5
PLO13 Beceriler - Bilişsel, Uygulamalı Develops long-term plans and strategies using econometric and statistical methods 3
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs self-study using knowledge of Econometrics, Statistics and Operations to solve a problem
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads the team by taking responsibility
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution 4
PLO19 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values
PLO21 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues


Week Plan

Week Topic Preparation Methods
1 Review of fundamentals Reading Assignments Öğretim Yöntemleri:
Tartışma
2 Dynamic panel data, review Reading Assignments Öğretim Yöntemleri:
Tartışma
3 Panel unit root tests -review Reading Assignments Öğretim Yöntemleri:
Tartışma
4 Panel unit root tests, application Reading Assignments Öğretim Yöntemleri:
Alıştırma ve Uygulama
5 Panel unit root tests, inference Reading Assignments Öğretim Yöntemleri:
Anlatım
6 Panel cointegration tests -review Reading Assignments Öğretim Yöntemleri:
Tartışma
7 Review Reading Assignments Öğretim Yöntemleri:
Tartışma
8 Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Panel cointegration tests, application Reading Assignments Öğretim Yöntemleri:
Alıştırma ve Uygulama
10 Panel error correction models Reading Assignments Öğretim Yöntemleri:
Anlatım
11 Pooled mean group estimators Reading Assignments Öğretim Yöntemleri:
Anlatım
12 Application with Pooled mean group estimators Reading Assignments Öğretim Yöntemleri:
Alıştırma ve Uygulama
13 Modeling panel data with small T Reading Assignments Öğretim Yöntemleri:
Anlatım
14 Application by Modeling panel data with small T Reading Assignments Öğretim Yöntemleri:
Alıştırma ve Uygulama
15 Bias and its solution Reading Assignments Öğretim Yöntemleri:
Anlatım
16 Term Exams Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 8 112
Assesment Related Works
Homeworks, Projects, Others 2 4 8
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 24 24
Total Workload (Hour) 212
Total Workload / 25 (h) 8,48
ECTS 8 ECTS

Update Time: 07.03.2025 12:08