BBZ205 Probability and Statistics

6 ECTS - 3-0 Duration (T+A)- 3. Semester- 3 National Credit

Information

Code BBZ205
Name Probability and Statistics
Term 2024-2025 Academic Year
Semester 3. Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜZİN YÜKSEL
Course Instructor Prof. Dr. GÜZİN YÜKSEL (A Group) (Ins. in Charge)


Course Goal / Objective

This course aims to lay the foundation for an introduction to statistics by teaching information about probability theory, random variables and the distributions of these variables.

Course Content

Random experiment, sample space, event, probability function, probability calculations, conditional probability, random variables, functions of random variables, discrete random variables and their distributions.

Course Precondition

There are no prerequisites.

Resources

Olasılık ve İstatistik, Fikri Akdeniz, Nobel Yayınevi Olasılık ve İstatistik, Semra Oral Erbaş, Gazi Kitabevi.

Notes

Olasılığa Giriş, George Roussas, Çeviri Editörü: Prof. Dr. Şanslı Şenol, Doç. Dr. Güzin Yüksel.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Understands sample spaces, sample points and counting sample points rules.
LO02 Uses frequency table in analysis
LO03 Uses measures of central tendency and dispersion
LO04 Apply the rules of conditional probability
LO05 Understands the concept of a random variable and distribution of a random variable
LO06 Recognize the expected value, variance and properties of a random variable.
LO07 Uses the concepts of regression and correlation
LO08 Recognizes discrete and continuous distributions


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Gain comprehensive knowledge of fundamental concepts, algorithms, and data structures in Computer Science.
PLO02 Bilgi - Kuramsal, Olgusal Learn essential computer topics such as software development, programming languages, and database management
PLO03 Bilgi - Kuramsal, Olgusal Understand advanced computer fields like data science, artificial intelligence, and machine learning. 4
PLO04 Bilgi - Kuramsal, Olgusal Acquire knowledge of topics like computer networks, cybersecurity, and database design.
PLO05 Beceriler - Bilişsel, Uygulamalı Develop skills in designing, implementing, and analyzing algorithms
PLO06 Beceriler - Bilişsel, Uygulamalı Gain proficiency in using various programming languages effectively
PLO07 Beceriler - Bilişsel, Uygulamalı Learn skills in data analysis, database management, and processing large datasets. 5
PLO08 Beceriler - Bilişsel, Uygulamalı Acquire practical experience through working on software development projects.
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Strengthen teamwork and communication skills. 3
PLO10 Yetkinlikler - Alana Özgü Yetkinlik Foster a mindset open to technological innovations.
PLO11 Yetkinlikler - Öğrenme Yetkinliği Encourage the capacity for continuous learning and self-improvement.
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Enhance the ability to solve complex problems 4


Week Plan

Week Topic Preparation Methods
1 Sample spaces, sample points, counting rules for sample points Reading source Öğretim Yöntemleri:
Beyin Fırtınası, Anlatım
2 Independent Events, Complete independence, Conditional Probability and Bayes' Theorem Reading source Öğretim Yöntemleri:
Anlatım, Soru-Cevap
3 Organising Data (frequency table) and Graphs Reading source Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
4 Mean, Mod, Median, Standard Deviation and Other Central Tendency and Dispersion Measures Reading source Öğretim Yöntemleri:
Anlatım, Tartışma
5 Discrete and continous random variables, Expected Value, Variance, Moments, Moment Generating Functions Reading source Öğretim Yöntemleri:
Anlatım, Soru-Cevap
6 Discrete probability distributions Reading source Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
7 Continous probability distributions Reading source Öğretim Yöntemleri:
Soru-Cevap, Anlatım, Tartışma
8 Mid-Term Exam Review of topics discussed in the lecture notes and sources Ölçme Yöntemleri:
Yazılı Sınav
9 Probability Distribution with two random variables, marginal and conditional probability distributions Reading source Öğretim Yöntemleri:
Soru-Cevap, Anlatım
10 Point estimate, interval estimate, confidence intervals Reading source Öğretim Yöntemleri:
Anlatım, Tartışma
11 Hyphoteses Testing (Error Types, critical values, decision making, testing means, testing ratios, testing differences between two means, variance test) Reading source Öğretim Yöntemleri:
Soru-Cevap, Anlatım
12 Tests for goodness of fit, test of independence and test of homogeneity Reading source Öğretim Yöntemleri:
Anlatım, Tartışma
13 Simple Regression and Correlation Reading source Öğretim Yöntemleri:
Anlatım, Tartışma
14 Least squares method, parameter estimates, coefficient of determination Reading source Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
15 Review and Examples Review of topics discussed in the lecture notes and sources Öğretim Yöntemleri:
Alıştırma ve Uygulama, Soru-Cevap
16 Term Exams Review of topics discussed in the lecture notes and sources Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Review of topics discussed in the lecture notes and sources Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 6 84
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 8 8
Final Exam 1 16 16
Total Workload (Hour) 150
Total Workload / 25 (h) 6,00
ECTS 6 ECTS

Update Time: 01.11.2024 02:08