IEM756 Data Mining Methods II

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (MASTER) (WITH THESIS)
Code IEM756
Name Data Mining Methods II
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. SÜLEYMAN BİLGİN KILIÇ
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

data mining and database management, develop the ability to analyze large datasets, and enhance skills in managing data security and access processes. Improving analytical thinking in data processing and knowledge discovery is aimed.

Course Content

The course content covers the concept of data mining and database design, examining data warehousing and other storage techniques. The use of database and data warehouse servers is emphasized, along with the creation, expansion, and design of database objects and tables. The development of database forms and subforms, query design, report generation, and data summarization are explored. The process of cleaning noisy and inconsistent data, capturing and evaluating data patterns using data mining methods is analyzed. Information presentation techniques are discussed to effectively deliver extracted knowledge to users, while the conversion of database objects into HTML and ASP files and their use in online environments are examined. The creation and use of data access pages, query design, and database security management are also covered.

Course Precondition

No prerequisites

Resources

Relevant corporate Internet resources

Notes

Related computer packages


Course Learning Outcomes

Order Course Learning Outcomes
LO01 explain the concepts of econometrics
LO02 construct the economic models
LO03 collect, arrange and analyze the data
LO04 students can use an econometric software
LO05 students define informaiton about statistics, operations research and mathematics
LO06 Detects patterns, relationships, interactions, and anomalies in data to generate meaningful insights.
LO07 Conducts data analysis using various data mining algorithms.
LO08 Shares database objects over the internet and manages data access processes.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explains contemporary concepts about Econometrics, Statistics, and Operation Research 5
PLO02 Bilgi - Kuramsal, Olgusal Explains relationships between acquired knowledge about Econometrics, Statistics, and Operation Research 4
PLO03 Bilgi - Kuramsal, Olgusal Explains how to apply acquired knowledge in the field to Economics, Business, and other social sciences 3
PLO04 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 4
PLO05 Beceriler - Bilişsel, Uygulamalı Models problems with Mathematics, Statistics, and Econometrics 1
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 4
PLO07 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research 3
PLO08 Beceriler - Bilişsel, Uygulamalı Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution 2
PLO09 Beceriler - Bilişsel, Uygulamalı Searches for new approaches and methods to solve problems being faced 4
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently
PLO11 Beceriler - Bilişsel, Uygulamalı Collects/analyzes data in a purposeful way 3
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Converts its findings into a master's thesis or a professional report in Turkish or a foreign language 4
PLO13 Beceriler - Bilişsel, Uygulamalı Develops solutions for organizations using Econometrics, Statistics, and Operation Research 3
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research 2
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs an individual work to solve a problem with Econometrics, Statistics, and Operation Research 4
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads by taking responsibility individually and/or within the team 1
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study 2
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO19 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values


Week Plan

Week Topic Preparation Methods
1 Remembering basic data mining methods and statistical concepts Research Öğretim Yöntemleri:
Anlatım, Soru-Cevap
2 Discovering the basic interactions and relationships between the variables and dimensionality reduction methods; principal components factor analysis Research Öğretim Yöntemleri:
Anlatım, Problem Çözme
3 Principal components factor analysis; continued Research Öğretim Yöntemleri:
Anlatım, Problem Çözme
4 Nonparametric methods: Artificial neural networks method, Research Öğretim Yöntemleri:
Anlatım, Tartışma
5 Artificial neural networks method; continued Research Öğretim Yöntemleri:
Anlatım
6 Parametric methods:Logit analysis Research Öğretim Yöntemleri:
Anlatım
7 Logit analysis; continued Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
8 Mid-Term Exam Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Discriminant analysis Research Öğretim Yöntemleri:
Anlatım
10 Discriminant analysis; continued Research Öğretim Yöntemleri:
Anlatım, Problem Çözme
11 Hierarchical cluster analysis Research Öğretim Yöntemleri:
Anlatım, Problem Çözme
12 Hierarchical cluster analysis; contiued Research Öğretim Yöntemleri:
Anlatım
13 k-nearest neighbor algorithm Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
14 Decision tree classification algorithm Research Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
15 c4.5 algorithm Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
16 Term Exams Term Exams Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 30 30
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 27.02.2025 10:04