Information
Code | ME352 |
Name | Fluid Mechanics II |
Term | 2024-2025 Academic Year |
Semester | 6. Semester |
Duration (T+A) | 3-0 (T-A) (17 Week) |
ECTS | 5 ECTS |
National Credit | 3 National Credit |
Teaching Language | İngilizce |
Level | Lisans Dersi |
Type | Normal |
Label | C Compulsory |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | Doç. Dr. GÖKTÜRK MEMDUH ÖZKAN |
Course Instructor |
Doç. Dr. GÖKTÜRK MEMDUH ÖZKAN
(A Group)
(Ins. in Charge)
|
Course Goal / Objective
To teach the basic principles and equations of fluid mechanics; To present numerious and diverse real-world engineering examples to give students a feel for how fluid mechanics is applied in engineering practice; To develop a comprehensive understanding of fluid mechanics by emphasizing the physics of flow, and by supplying related figures and visual documents to reinforce the flow physics.
Course Content
1. Flow in Pipes 2. Differential Analysis of Fluid Flow 3. Approximate Solutions of the Navier- Stokes Equation 4. Flow over Bodies: Drag and Lift 5. Compressible Flow 6. Turbomachinery
Course Precondition
none
Resources
Lecture notes Book: Fluid Mechanics: Fundamentals and Applications- Yunus A. Cengel, John M. Cimbala
Notes
1. Fluid Mechanics, Frank M. White, McGraw- Hill 2. A Brief Introduction to Fluid Mechanics, Donald F. Young, Bruce R. Munson, Theodore H. Okiishi, Wade W. Huebsch, John Wiley and Sons Company
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Knows the fully developed flow properties with the laminar and turbulent flow in the pipes and to determines the pump power by calculating the continuous and local losses in the pipes. |
LO02 | Derives differential equations for mass and momentum conservation. |
LO03 | Analytically solves the different geometric flow problems. |
LO04 | Have an intutive understanding of the various physical phenomena such as drag, friction and pressure drag reduction, and lift. |
LO05 | Can calculate the drag force associated with flow over common geometries. |
LO06 | Calculate the flow shape and regime and the dimensions of the resistances in the spheres and the grip resistance and lift forces of the flow on it. |
LO07 | Explain the causes of shock formation by understanding the effects of compressibility on gas flow. |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | Adequate knowledge in mathematics, science, and topics specific to mechanical engineering; the ability to use theoretical and applied knowledge in these fields to solve complex engineering problems. | 4 |
PLO02 | Bilgi - Kuramsal, Olgusal | The ability to identify, formulate, and solve complex engineering problems in the fields of mechanical engineering and technology; the ability to select and apply appropriate analysis and modeling methods for this purpose. | 3 |
PLO03 | Bilgi - Kuramsal, Olgusal | The ability to design a complex system, process, device, or product under realistic constraints and conditions to meet specific requirements in mechanical engineering; the ability to apply modern design methods for this purpose. | 5 |
PLO04 | Bilgi - Kuramsal, Olgusal | The ability to select and use modern techniques and tools necessary for analyzing and solving complex problems encountered in mechanical engineering applications; the ability to effectively use information technologies. | 3 |
PLO05 | Bilgi - Kuramsal, Olgusal | The ability to design experiments, conduct experiments, collect data, analyze and interpret the results for the investigation of complex engineering problems or research topics specific to mechanical engineering. | |
PLO06 | Bilgi - Kuramsal, Olgusal | The ability to work effectively in intra-disciplinary (mechanical engineering) and multidisciplinary teams; the ability to work individually. | |
PLO07 | Bilgi - Kuramsal, Olgusal | The ability to communicate effectively both orally and in writing; proficiency in at least one foreign language; the ability to write effective reports in mechanical engineering, understand written reports, prepare design and production reports, deliver effective presentations, and give and receive clear instructions. | |
PLO08 | Beceriler - Bilişsel, Uygulamalı | Awareness of the necessity of lifelong learning; the ability to access information, follow developments in science and technology, and continuously renew oneself in the field of mechanical engineering. | |
PLO09 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Behaving in accordance with ethical principles, awareness of professional and ethical responsibilities in the field of mechanical engineering, and knowledge about the standards used in engineering practices. | |
PLO10 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Knowledge of business practices such as project management, risk management, and change management in the field of mechanical engineering; awareness of entrepreneurship and innovation; knowledge about sustainable development. | |
PLO11 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Awareness of the universal and societal dimensions of the impacts of mechanical engineering applications on health, environment, and safety, and knowledge about the contemporary issues in the field of mechanical engineering; awareness of the legal consequences of mechanical engineering solutions. |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | Laminar Flow in Pipes | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
2 | Turbulent Flow in Pipes | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
3 | Differential Flow Analysis- Conservation of Mass, Stream Function | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
4 | Differential flow analysis-Conservation of Linear Momentum, Navier-Stokes Equation | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
5 | Approximate Solutions of the Navier-Stokes Equation | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
6 | Approximate Solutions of the Navier-Stokes Equation- Boundary Layer Approximaiton | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
7 | Mid-term Exam | Exam, Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Ölçme Yöntemleri: Yazılı Sınav |
8 | External Flow: Drag | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
9 | External Flow: Lift | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
10 | Compressible Flow- Speed of Sound and Mach Number | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
11 | Compressible Flow- Shock Waves | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
12 | Open Channel flow | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
13 | Turbomachinery- Pumps | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
14 | Turbomachinery- Turbines | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama, Problem Çözme |
15 | Introduction to Computational Fluid Mechanics | Lecture, Exercise, Question Answer, Discussion, Practice, Question Answer, Discussion, Homework, Sampling Procedure Oral Information Exploration | Öğretim Yöntemleri: Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama |
16 | Term Exams | Sınav | Ölçme Yöntemleri: Yazılı Sınav |
17 | Term Exams | Sınav | Ölçme Yöntemleri: Yazılı Sınav |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 3 | 42 |
Out of Class Study (Preliminary Work, Practice) | 14 | 3 | 42 |
Assesment Related Works | |||
Homeworks, Projects, Others | 0 | 0 | 0 |
Mid-term Exams (Written, Oral, etc.) | 1 | 12 | 12 |
Final Exam | 1 | 18 | 18 |
Total Workload (Hour) | 114 | ||
Total Workload / 25 (h) | 4,56 | ||
ECTS | 5 ECTS |