BIST514 Data Science in Biostatistics and Artificial Intelligence

5 ECTS - 1-2 Duration (T+A)- . Semester- 2 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST514
Name Data Science in Biostatistics and Artificial Intelligence
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 1-2 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. İLKER ÜNAL
Course Instructor Doç. Dr. İLKER ÜNAL (Bahar) (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of this course is to enable students to understand data science and artificial intelligence methods used in health sciences, correctly interpret AI-based results from statistical and clinical perspectives, and integrate these outputs into evidence-based practice.

Course Content

This course covers the application of data science and artificial intelligence approaches in health sciences from a biostatistical perspective. Topics include large-scale health data, data preprocessing, feature selection, supervised and unsupervised learning concepts, classification and clustering approaches, model performance metrics, prediction and risk scoring, overfitting, model validation, clinical interpretation of results, and ethical considerations. Applications are conducted using health-related datasets.

Course Precondition

No prerequisites. (Basic knowledge of biostatistics and statistical software is recommended.)

Resources

James, G., Witten, D., Hastie, T., Tibshirani, R. An Introduction to Statistical Learning

Notes

Recent research articles on data science and AI in healthcare


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain data science and artificial intelligence concepts used in health sciences.
LO02 Describe data preprocessing steps for health-related data.
LO03 Distinguish between supervised and unsupervised learning approaches.
LO04 Interpret outputs of basic machine learning models.
LO05 Evaluate model performance using appropriate metrics.
LO06 Discuss the clinical use of prediction and risk models.
LO07 Explain ethical, privacy, and data security principles in AI applications.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences.
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes. 2
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences. 2
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 3
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 3
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences. 5
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context.
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches.
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 2
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 2
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings. 3


Week Plan

Week Topic Preparation Methods
1 Course introduction; overview of data science and AI Reading Öğretim Yöntemleri:
Anlatım
2 Structure of health data and big data Reading Öğretim Yöntemleri:
Anlatım
3 Data preprocessing and feature selection Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 Introduction to supervised learning Reading Öğretim Yöntemleri:
Anlatım
5 Classification approaches Reading Öğretim Yöntemleri:
Anlatım
6 Unsupervised learning and clustering Reading Öğretim Yöntemleri:
Anlatım
7 Model evaluation metrics Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Prediction and risk scores Reading Öğretim Yöntemleri:
Anlatım
10 Model validation and overfitting Reading Öğretim Yöntemleri:
Anlatım
11 AI applications in healthcare I Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 AI applications in healthcare II Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
13 Ethics, privacy, and data security Reading Öğretim Yöntemleri:
Anlatım
14 General review and applications I Reading Öğretim Yöntemleri:
Soru-Cevap, Tartışma, Alıştırma ve Uygulama
15 General review and applications II Reading Öğretim Yöntemleri:
Tartışma, Soru-Cevap, Alıştırma ve Uygulama
16 Term Exams Ölçme Yöntemleri:
Ödev
17 Term Exams Ölçme Yöntemleri:
Ödev


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 129
Total Workload / 25 (h) 5,16
ECTS 5 ECTS

Update Time: 12.01.2026 04:56