BMM019 Introduction to Brain Computer Interface

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Code BMM019
Name Introduction to Brain Computer Interface
Term 2022-2023 Academic Year
Semester . Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator


Course Goal / Objective

To teach the brain computer interface system and design. To provide knowledge to research on this subject.

Course Content

General blocks of a brain computer interface system and signal processing analysis methods used in this system.

Course Precondition

The course has no prerequisites. However, having knowledge in the fields of signal processing and machine learning will make an important contribution to the comprehension of the course topics.

Resources

Brain-Computer Interfacing: An Introduction. Rajesh P. N. Rao, Cambridge University Press, 2013.

Notes

No suggested additional course notes.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Can analyze electroencephalography (EEG) signals.
LO02 Knows the components and hardware of the brain-computer interface system.
LO03 Can extract features from electroencephalography (EEG) signals.
LO04 Can classify using machine learning methods and neural network structures.
LO05 Can design the brain-computer interface system as a whole.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal To be able to solve scientific problems encountered in the field of medicine and medical technologies by applying current and advanced technical approaches of mathematics, science and engineering sciences. 5
PLO02 Yetkinlikler - Öğrenme Yetkinliği To have a knowledge of the literature related to a sub-discipline of biomedical engineering, to define and model current problems. 5
PLO03 Beceriler - Bilişsel, Uygulamalı Ability to analyze data, design and conduct experiments, and interpret results 5
PLO04 Beceriler - Bilişsel, Uygulamalı Developing researched contemporary techniques and computational tools for engineering applications 5
PLO05 Beceriler - Bilişsel, Uygulamalı To be able to analyze and design a process in line with a defined target 4
PLO06 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conducting scientific studies with a medical doctor from an engineering perspective. 5
PLO07 Yetkinlikler - İletişim ve Sosyal Yetkinlik Expressing own findings orally and in writing, clearly and concisely. 3
PLO08 Yetkinlikler - Öğrenme Yetkinliği To be able to improve oneself by embracing the importance of lifelong learning and by following the developments in science-technology and contemporary issues. 3
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Ability to act independently, set priorities and creativity. 3
PLO10 Yetkinlikler - Alana Özgü Yetkinlik Being aware of national and international contemporary scientific and social problems in the field of Biomedical Engineering. 3
PLO11 Yetkinlikler - Alana Özgü Yetkinlik To be able to evaluate the contribution of engineering solutions to problems in medicine, medical technologies and health in a global and social context. 5


Week Plan

Week Topic Preparation Methods
1 Introduction. What is brain computer interfacing? Textbook and literature reading. Öğretim Yöntemleri:
Anlatım, Tartışma
2 Basic Neuroscience Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
3 Recording and stimulating the brain Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
4 Signal processing Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
5 Signal processing (continued) Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
6 Machine learning Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
7 Machine learning (continued) Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
8 Mid-Term Exam Textbook and lecture note reading Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım
9 Neural networks Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
10 Neural networks (continued) Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
11 Building a brain computer interfacing (BCI) system Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
12 Invasive BCIs Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
13 Semi-invasive BCIs Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
14 Noninvasive BCIs Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
15 BCIs that stimulate Textbook and literature reading Öğretim Yöntemleri:
Anlatım, Tartışma
16 Term Exams Textbook and lecture note reading Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım
17 Term Exams Textbook and lecture notes reading Ölçme Yöntemleri:
Yazılı Sınav, Proje / Tasarım


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 6 84
Assesment Related Works
Homeworks, Projects, Others 7 4 28
Mid-term Exams (Written, Oral, etc.) 1 2 2
Final Exam 1 2 2
Total Workload (Hour) 158
Total Workload / 25 (h) 6,32
ECTS 6 ECTS

Update Time: 21.11.2022 03:43