IEM1844 Advanced Statistical Data Analysis

8 ECTS - 4-0 Duration (T+A)- . Semester- 4 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (PhD)
Code IEM1844
Name Advanced Statistical Data Analysis
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 4-0 (T-A) (17 Week)
ECTS 8 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜLSEN KIRAL
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of the course is to refresh students' statistical knowledge, introduce them to complex and advanced statistical techniques, and inform them about the applications of these techniques through scientific articles and presentations. It is also aimed to provide the ability to model data using statistical package programs and to make statistical comments about the proposed model.

Course Content

The course content includes explaining the basic concepts related to advanced statistical data analysis, reinforcing these concepts with examples, and performing applications on computers to further concretize them.

Course Precondition

There are no prerequisites.

Resources

Freund, J. E., & Miller, M. (2004). John E. Freund's Mathematical Statistics: With Applications. Pearson Education India. Chatterjee, S., & Hadi, A. S. (2000). B. Price Regression analysis by example.

Notes

Rawlings, J. O. (1988). Applied regression analysis: a research tool. Wadsworth & Brooks. Pacific Grove, CA. Alpar, C. (2017). Uygulamalı çok değişkenli istatistiksel yöntemler.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Defines continuous distributions.
LO02 Explain the probability integral transform.
LO03 Applies sampling distributions.
LO04 Explains rank statistics.
LO05 Explains regression and ANOVA.
LO06 Explains multivariate discriminant analysis.
LO07 Explains cluster analysis.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Identify an econometric problem and propose a new solution to it
PLO02 Bilgi - Kuramsal, Olgusal Develops new knowledge using current concepts in Econometrics, Statistics and Operations Research 3
PLO03 Bilgi - Kuramsal, Olgusal Explain for what purpose and how econometric methods are applied to other fields and disciplines 2
PLO04 Beceriler - Bilişsel, Uygulamalı Using her knowledge, brings original solutions to problems in Economics, Business Administration and other social sciences 3
PLO05 Beceriler - Bilişsel, Uygulamalı Creates a new model using mathematics, statistics and econometrics knowledge to solve the problem encountered 4
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 3
PLO07 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 2
PLO08 Beceriler - Bilişsel, Uygulamalı Collects data on purpose 4
PLO09 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 3
PLO11 Beceriler - Bilişsel, Uygulamalı Converts its findings into a master's thesis or a professional report in Turkish or a foreign language 4
PLO12 Beceriler - Bilişsel, Uygulamalı It researches current approaches and methods to solve the problems it encounters and proposes new solutions 4
PLO13 Beceriler - Bilişsel, Uygulamalı Develops long-term plans and strategies using econometric and statistical methods 3
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research 3
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs self-study using knowledge of Econometrics, Statistics and Operations to solve a problem 4
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads the team by taking responsibility 3
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution 3
PLO19 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form 4
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values 3
PLO21 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues 2


Week Plan

Week Topic Preparation Methods
1 Continuous distributions (exponential, gamma, beta, normal distributions) Reading Öğretim Yöntemleri:
Anlatım, Tartışma
2 Continuous distributions Reading Öğretim Yöntemleri:
Anlatım
3 Probability integral transform Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap
4 Variable substitution with multivariate distributions, Central limit theorem Reading Öğretim Yöntemleri:
Anlatım
5 Sampling distributions Reading Öğretim Yöntemleri:
Anlatım
6 Rank statistics Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap
7 Review Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Preparing for the midterm exam Ölçme Yöntemleri:
Yazılı Sınav
9 statistical inference. Reading Öğretim Yöntemleri:
Anlatım
10 regression and ANOVA Reading Öğretim Yöntemleri:
Anlatım
11 parameterless statistical applications, multivariate regression. Reading Öğretim Yöntemleri:
Anlatım
12 multivariate discriminant analysis Reading Öğretim Yöntemleri:
Anlatım
13 MANOVA, MANCOVA Reading Öğretim Yöntemleri:
Anlatım, Tartışma
14 logistic regression, probit regression Reading Öğretim Yöntemleri:
Anlatım
15 topit, combined analysis, cluster analysis. Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap
16 Term Exams Final exam preparation Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Final exam preparation Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 8 112
Assesment Related Works
Homeworks, Projects, Others 2 4 8
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 24 24
Total Workload (Hour) 212
Total Workload / 25 (h) 8,48
ECTS 8 ECTS

Update Time: 27.02.2025 12:41