IEM1802 Econometric Theory II

8 ECTS - 4-0 Duration (T+A)- . Semester- 4 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (PhD)
Code IEM1802
Name Econometric Theory II
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 4-0 (T-A) (17 Week)
ECTS 8 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Doktora Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. HASAN ALTAN ÇABUK
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to teach econometrics methods at an advanced level to the graduates of Econometrics, Mathematics or Statistics.

Course Content

In this course the topics of multiple linear regression model, ordinary least squares (OLS) estimation, finite sample properties of OLS estimators, asymptotic properties, functional form and structural change, binary variables, structural break modelling and testing, model stability test, nonlinear regression models, generalized regression model, heteroscedasticity problem, multicollinearity, panel data models, regression equations system, simultaneous equations model, maximum likelihood estimation, models with delayed variable, time series models will be covered.

Course Precondition

There are no prerequisites for the course

Resources

Gujarati, D. N. & Porter, D. C. (2012). Temel ekonometri (Ü. Şenesen and G. Günlük Şenesen, Trans.). İstanbul: Literatür Publishing.

Notes

Baltagi, B. H. (2008). Econometrics. Berlin, Heidelberg: Springer-Verlag.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Bringing the basic econometrics knowledge to the advanced level
LO02 Using information technologies and at least one computer programming language related to econometrics, statistics and operations research fields
LO03 Making research on topics related to econometrics, using the acquired knowledge at the maximum extent for this research and preparing a report on this research, presenting the report in the best way
LO04 Following current developments as being aware of the necessity of lifelong learning, being in progress continuously
LO05 Interpreting data on economic and social events
LO06 Explaining the difference between simple regression and multiple regression
LO07 Writing the basic concepts related to deviations from the classical linear regression model
LO08 Defining the concepts of structural equation and reduced form equation


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Identify an econometric problem and propose a new solution to it
PLO02 Bilgi - Kuramsal, Olgusal Develops new knowledge using current concepts in Econometrics, Statistics and Operations Research
PLO03 Bilgi - Kuramsal, Olgusal Explain for what purpose and how econometric methods are applied to other fields and disciplines
PLO04 Beceriler - Bilişsel, Uygulamalı Using her knowledge, brings original solutions to problems in Economics, Business Administration and other social sciences
PLO05 Beceriler - Bilişsel, Uygulamalı Creates a new model using mathematics, statistics and econometrics knowledge to solve the problem encountered
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 4
PLO07 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems
PLO08 Beceriler - Bilişsel, Uygulamalı Collects data on purpose 5
PLO09 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 2
PLO11 Beceriler - Bilişsel, Uygulamalı Converts its findings into a master's thesis or a professional report in Turkish or a foreign language
PLO12 Beceriler - Bilişsel, Uygulamalı It researches current approaches and methods to solve the problems it encounters and proposes new solutions 3
PLO13 Beceriler - Bilişsel, Uygulamalı Develops long-term plans and strategies using econometric and statistical methods 5
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs self-study using knowledge of Econometrics, Statistics and Operations to solve a problem
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads the team by taking responsibility
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution
PLO19 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values
PLO21 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues


Week Plan

Week Topic Preparation Methods
1 Review of multiple linear regression model and linear hypothesis tests Gujarati & Porter (2012) - Temel ekonometri (Chapters 7-8) Öğretim Yöntemleri:
Anlatım, Problem Çözme, Soru-Cevap
2 Deviations from classical linear regression model: Multicollinearity Gujarati & Porter (2012) - Temel ekonometri (Chapter 10) Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
3 Deviations from the classical linear regression model: Autocorrelation Gujarati & Porter (2012) - Temel ekonometri (Chapter 12) Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Tartışma
4 Deviations from the classical linear regression model: Heteroscedasticity Gujarati & Porter (2012) - Temel ekonometri (Chapter 11) Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Problem Çözme
5 Deviations from the classical linear regression model: General review Gujarati & Porter (2012) - Temel ekonometri (Chapters 10-12) Öğretim Yöntemleri:
Problem Çözme, Grup Çalışması, Alıştırma ve Uygulama
6 Structural change and Chow test Gujarati & Porter (2012) - Temel ekonometri (Chapter 8) Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Soru-Cevap
7 Article work Gujarati & Porter (2012) - Temel ekonometri (Chapters 7-12) Öğretim Yöntemleri:
Anlatım, Grup Çalışması, Tartışma
8 Mid-Term Exam Studying the course content Ölçme Yöntemleri:
Yazılı Sınav
9 Structural change and dummy variables Gujarati & Porter (2012) - Temel ekonometri (Chapter 9) Öğretim Yöntemleri:
Anlatım, Problem Çözme, Soru-Cevap
10 Multi-equation econometric models: Structural model and reduced form model Gujarati & Porter (2012) - Temel ekonometri (Chapters 18-19) Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
11 Multiple equation econometric models: Investigation of identification on structural model Gujarati & Porter (2012) - Temel ekonometri (Chapters 18-19) Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Tartışma
12 Multi-equation econometric models: Investigation of identification on reduced form-1 Gujarati & Porter (2012) - Temel ekonometri (Chapters 18-19) Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama, Problem Çözme
13 Multiple equation econometric models: Investigation of identification on structural model-2 Gujarati & Porter (2012) - Temel ekonometri (Chapters 18-19) Öğretim Yöntemleri:
Problem Çözme, Grup Çalışması, Alıştırma ve Uygulama
14 Preparing article work Gujarati & Porter (2012) - Temel ekonometri (Chapters 18-20) Öğretim Yöntemleri:
Anlatım, Grup Çalışması, Tartışma
15 Making article work Gujarati & Porter (2012) - Temel ekonometri (Chapters 18-20) Öğretim Yöntemleri:
Problem Çözme, Grup Çalışması, Alıştırma ve Uygulama
16 Final Exam Studying the whole course content Ölçme Yöntemleri:
Sözlü Sınav
17 Final Exam Studying the whole course content Ölçme Yöntemleri:
Sözlü Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 8 112
Assesment Related Works
Homeworks, Projects, Others 2 4 8
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 24 24
Total Workload (Hour) 212
Total Workload / 25 (h) 8,48
ECTS 8 ECTS

Update Time: 28.02.2025 08:31