VTS321 Artificial Intelligence in Veterinary Medicine

1 ECTS - 1-0 Duration (T+A)- 5. Semester- 1 National Credit

Information

Code VTS321
Name Artificial Intelligence in Veterinary Medicine
Term 2024-2025 Academic Year
Semester 5. Semester
Duration (T+A) 1-0 (T-A) (17 Week)
ECTS 1 ECTS
National Credit 1 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Label GC General Culture Courses E Elective
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Dr. Öğr. Üyesi SİNAN KANDIR
Course Instructor Dr. Öğr. Üyesi SİNAN KANDIR (A Group) (Ins. in Charge)


Course Goal / Objective

This course aims to introduce students to the fundamental concepts of artificial intelligence and teach its applications in veterinary medicine. The course covers the use of AI in veterinary medicine, including decision support systems, imaging technologies, animal health management, and big data analysis.

Course Content

This course covers the fundamental concepts and principles of artificial intelligence, machine learning and deep learning models, and the application of AI in veterinary medicine for disease diagnosis, treatment planning, and animal health management. Additionally, it explores decision support systems, fuzzy logic applications, big data analysis, and the use of the Internet of Things (IoT) in farm management. Topics such as veterinary radiology, image analysis, artificial neural networks, data security, and ethical considerations are discussed to evaluate the current and future potential of AI applications in veterinary medicine.

Course Precondition

N/A

Resources

- An Introduction to Veterinary Medicine Engineering, Springer Cham, 2023 - Artificial Intelligence: A Modern Approach – Stuart Russell & Peter Norvig (4. Ed., 2021)

Notes

Relevant literature, video and web-based materials, lecture notes, presentations.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains fundamental concepts and algorithms of artificial intelligence.
LO02 Identifies artificial intelligence applications used in veterinary medicine.
LO03 Describes the role of AI and machine learning models in veterinary diagnosis and treatment.
LO04 Understands the use of digitalization and Internet of Things (IoT) technologies in veterinary medicine.
LO05 Evaluates the application of artificial neural networks and deep learning models in veterinary medicine.
LO06 Understands the importance of big data analysis in veterinary medicine and its integration with AI.
LO07 Discusses the ethical aspects and data security issues related to artificial intelligence applications.
LO08 Follows recent developments in artificial intelligence applications in veterinary medicine.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Distinguishes animal species and breeds based on their structural (morphological), functional (physiological, biochemical) and behavioral characteristics and whether they can be consumed for food purposes.
PLO02 Bilgi - Kuramsal, Olgusal Explains the sources, physical and chemical properties and preparation of drugs.
PLO03 Bilgi - Kuramsal, Olgusal Describes the effects and side effects of medications on patients
PLO04 Bilgi - Kuramsal, Olgusal Explains the formation mechanisms of animal diseases and their pathological effects on the body.
PLO05 Bilgi - Kuramsal, Olgusal It makes efficiency evaluations among animal breeds and, when necessary, carries out selection, hybridization and artificial insemination at a level that can carry out breeding work.
PLO06 Bilgi - Kuramsal, Olgusal Disposes of dead animal material, tissue samples, medical and chemical waste appropriately in accordance with international, national laws and regulations. 3
PLO07 Beceriler - Bilişsel, Uygulamalı It determines the correct approach area for the patient by evaluating the examination, operation etc. practices in the clinic according to the topographic anatomy.
PLO08 Beceriler - Bilişsel, Uygulamalı Uses biochemical parameters in diagnostic processes by evaluating the information obtained with cause-effect relationships.
PLO09 Beceriler - Bilişsel, Uygulamalı Writes prescriptions in accordance with diagnosis and treatment protocols for diseases and poisoning in animals.
PLO10 Beceriler - Bilişsel, Uygulamalı Implements necessary measures, including biosecurity, to control infectious diseases. 4
PLO11 Beceriler - Bilişsel, Uygulamalı Performs necropsy to evaluate findings in dead animals, directs tissues to the necessary laboratory according to appropriate storage methods and prepares a report.
PLO12 Beceriler - Bilişsel, Uygulamalı Monitors patients in the post-operative process according to the main treatment methods of surgical diseases in animal species.
PLO13 Beceriler - Bilişsel, Uygulamalı Applies sedation, anesthesia and pain management methods safely according to animal species.
PLO14 Beceriler - Bilişsel, Uygulamalı Correctly applies biosafety principles such as sterilization of clinical and laboratory equipment and clothing. 3
PLO15 Beceriler - Bilişsel, Uygulamalı It regulates the care and feeding protocols according to animal species and supervises the consumption of animal foods produced for human consumption or foods containing animal products in their composition. 5
PLO16 Beceriler - Bilişsel, Uygulamalı Evaluates laboratory results of animal diseases and applies correct diagnosis, prognosis and treatment methods based on the data obtained. 5
PLO17 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği He/she is conscious of performing his/her profession by being aware of his/her powers and responsibilities.
PLO18 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Examines scientific techniques and methods according to facts related to veterinary services and takes analysis or methodological responsibility for problems. 2
PLO19 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği It uses adequate technology in the hygienic production, manufacturing, processing, consumption and sales of food by conducting health control of animal food products produced for human consumption.
PLO20 Yetkinlikler - Öğrenme Yetkinliği Lists the methods of producing and using scientific knowledge in his/her professional field. 5
PLO21 Yetkinlikler - Öğrenme Yetkinliği Uses updated legislation regarding veterinary services when necessary. 2
PLO22 Yetkinlikler - Öğrenme Yetkinliği Performs an examination appropriate to the case, applying the contribution of imaging methods to diagnosis and radiation safety in accordance with current regulations. 1
PLO23 Yetkinlikler - Öğrenme Yetkinliği Keeps clinical and patient records using proper and scientific methods.
PLO24 Yetkinlikler - Öğrenme Yetkinliği By observing the basic principles of medicine, it develops management methods and appropriate management plans for animal production enterprises.
PLO25 Yetkinlikler - İletişim ve Sosyal Yetkinlik Implement social projects and plans with social awareness, based on professional skills and authority with a computer usage license, advanced computer software.
PLO26 Yetkinlikler - İletişim ve Sosyal Yetkinlik Works in cooperation with other colleagues by following the world agenda within the framework of professional ethics and deontology rules.
PLO27 Yetkinlikler - Alana Özgü Yetkinlik Produces solutions to field-specific problems in line with scientific data/evidence.
PLO28 Yetkinlikler - Alana Özgü Yetkinlik He/she has the ethical values ​​of the veterinary profession and defends these values.
PLO29 Yetkinlikler - Alana Özgü Yetkinlik Takes appropriate precautions by clinically recognizing zoonosis and notifiable diseases.
PLO30 Yetkinlikler - Alana Özgü Yetkinlik Determines the methods of diagnosis, prevention, treatment and operation of diseases in different animal species.
PLO31 Yetkinlikler - Alana Özgü Yetkinlik In emergency cases, intervenes in all animals and applies first aid methods.
PLO32 Yetkinlikler - Alana Özgü Yetkinlik Makes judgments on animal husbandry principles and breeding by assessing the physical condition, welfare and rearing conditions of domestic animals, communicating appropriately with animal owners and colleagues.
PLO33 Yetkinlikler - Alana Özgü Yetkinlik Independently interprets articles and presentations published in other scientific fields related to Veterinary Medicine to maintain professional development and skills.
PLO34 Yetkinlikler - Alana Özgü Yetkinlik When necessary, euthanizes animals using appropriate methods and respecting the feelings of animal owners.
PLO35 Yetkinlikler - Alana Özgü Yetkinlik By mastering the concepts of occupational safety in terms of the workplace and the personnel working with it, they have the competence to apply and defend it.


Week Plan

Week Topic Preparation Methods
1 Introduction to Artificial Intelligence Reviewing related literature and lecture notes Öğretim Yöntemleri:
Anlatım, Beyin Fırtınası, Soru-Cevap
2 Fundamentals of AI Algorithms Reading about AI algorithms Öğretim Yöntemleri:
Anlatım, Soru-Cevap
3 Machine Learning and Deep Learning Reviewing machine learning models Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Beyin Fırtınası
4 Decision Support Systems and Fuzzy Logic Reading about decision support systems in veterinary medicine Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Beyin Fırtınası
5 AI Programming Languages and Applications Basic exploration of Python, R Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma, Grup Çalışması
6 Genetic Algorithms in Veterinary Medicine Researching genetic algorithms in biomedical applications Öğretim Yöntemleri:
Anlatım, Gösterip Yaptırma, Soru-Cevap, Beyin Fırtınası
7 AI-Based Imaging Systems Reviewing veterinary imaging systems Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma, Beyin Fırtınası
8 Mid-Term Exam Reviewing previous topics Ölçme Yöntemleri:
Yazılı Sınav, Ödev, Proje / Tasarım, Performans Değerlendirmesi, Sözlü Sınav
9 Artificial Neural Networks: Perception and Feedback Mechanisms Principles of artificial neural networks Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Problem Çözme, Proje Temelli Öğrenme
10 Artificial Neural Networks: Deep Learning Models Reading about deep learning models Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Gösterip Yaptırma, Grup Çalışması
11 Machine Learning and Prediction Models Researching machine learning algorithms Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Gösterip Yaptırma, Grup Çalışması
12 Big Data Analysis and Data Mining Reviewing big data applications in veterinary medicine Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Gösterip Yaptırma, Grup Çalışması, Beyin Fırtınası
13 IoT Technologies in Livestock Farming Literature review on IoT applications Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme, Proje Temelli Öğrenme , Beyin Fırtınası, Grup Çalışması
14 AI Applications in Veterinary Medicine: Case Studies Literature review on case studies Öğretim Yöntemleri:
Soru-Cevap, Tartışma, Proje Temelli Öğrenme , Örnek Olay, Beyin Fırtınası, Grup Çalışması
15 AI Ethics and Data Security Reading about AI ethics and data security Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme, Beyin Fırtınası, Tartışma
16 Term Exams Reviewing previous topics Ölçme Yöntemleri:
Yazılı Sınav, Sözlü Sınav, Ödev, Proje / Tasarım, Performans Değerlendirmesi
17 Term Exams Reviewing previous topics Ölçme Yöntemleri:
Yazılı Sınav, Sözlü Sınav, Ödev, Proje / Tasarım, Performans Değerlendirmesi


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 1 14
Out of Class Study (Preliminary Work, Practice) 14 1 14
Assesment Related Works
Homeworks, Projects, Others 1 2 2
Mid-term Exams (Written, Oral, etc.) 1 2 2
Final Exam 1 2 2
Total Workload (Hour) 34
Total Workload / 25 (h) 1,36
ECTS 1 ECTS

Update Time: 22.02.2025 01:57