IEM757 Advanced Linear Programming

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (MASTER) (WITH THESIS)
Code IEM757
Name Advanced Linear Programming
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Dr. Öğr. Üyesi SEMİN PAKSOY
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

Generating effective solutions in multi-objective optimization and decision-making processes using different linear programming approaches is aimed.

Course Content

The concept of linear programming and examines solution methods for linear programming problems. The optimization process is analyzed using the Simplex method, and sensitivity analysis is conducted to assess the impact of variable changes on solutions. Parametric linear programming and the revised Simplex method are introduced to evaluate different optimization scenarios. The concept of duality is explained, emphasizing its significance in linear programming. Goal programming and multi-objective optimization methods are explored to analyze multi-criteria decision-making processes. The interior-point algorithm is discussed to evaluate alternative optimization techniques.

Course Precondition

No prerequisites are required

Resources

Öztürk, Ahmet (2016 ). Yöneylem Araştırması, Ekin Kitabevi, Bursa.

Notes

Taha, H. A. (2001). Araştırma yöntemleri (Ş. A. Baray & Ş. Esnaf, Çev.). Literatür Yayıncılık. Holzman, A. G. (2020). Mathematical programming for operations researchers and computer scientists (1st ed.). CRC Press.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Applies Linear Programming methods
LO02 Solves Multivariate DP problems with fast and efficient algorithms
LO03 Reaches the optimum solution of LP problems involving multiple and conflicting objectives.
LO04 Gains the ability to use computers in solving DP problems
LO05 Interprets the output obtained in solving DP problems in detail.
LO06 Evaluates solution results in terms of sensitivity to variables.
LO07 Generates alternative optimization solutions using the interior-point algorithm.
LO08 Explains the relationship between duality and linear programming.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explains contemporary concepts about Econometrics, Statistics, and Operation Research 4
PLO02 Bilgi - Kuramsal, Olgusal Explains relationships between acquired knowledge about Econometrics, Statistics, and Operation Research 3
PLO03 Bilgi - Kuramsal, Olgusal Explains how to apply acquired knowledge in the field to Economics, Business, and other social sciences
PLO04 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 4
PLO05 Beceriler - Bilişsel, Uygulamalı Models problems with Mathematics, Statistics, and Econometrics 4
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 5
PLO07 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research 3
PLO08 Beceriler - Bilişsel, Uygulamalı Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution 4
PLO09 Beceriler - Bilişsel, Uygulamalı Searches for new approaches and methods to solve problems being faced
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 5
PLO11 Beceriler - Bilişsel, Uygulamalı Collects/analyzes data in a purposeful way 5
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Converts its findings into a master's thesis or a professional report in Turkish or a foreign language 3
PLO13 Beceriler - Bilişsel, Uygulamalı Develops solutions for organizations using Econometrics, Statistics, and Operation Research 3
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research 4
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs an individual work to solve a problem with Econometrics, Statistics, and Operation Research 4
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads by taking responsibility individually and/or within the team 3
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO19 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values


Week Plan

Week Topic Preparation Methods
1 Simplex method for lineer programing Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
2 Standard LP model in matrix form, basic solutions and basics Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
3 Sensitivity analysis Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
4 Parametric linear programming Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap
5 Parametric Linear Programming Applications Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
6 Revised Simplex Method Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
7 Revised Simplex Method Applications Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
8 Mid-Term Exam Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Bounded variables primal simplex method Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
10 Dual problems in matrix form and their optimum solutions Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap
11 Goal programming Reading Öğretim Yöntemleri:
Anlatım, Problem Çözme, Alıştırma ve Uygulama
12 Multiobjective optimization Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
13 Applications of multiobjective optimization and an application on computer Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
14 Karmarkar interior point algorithm Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap
15 Karmarkar Interior Point Algorithm Computer Application Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Problem Çözme
16 Term Exams Term Exams Ölçme Yöntemleri:
Ödev
17 Term Exams Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 30 30
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 27.02.2025 10:04