IEM755 Data Mining Methods I

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
ECONOMETRICS (MASTER) (WITH THESIS)
Code IEM755
Name Data Mining Methods I
Term 2024-2025 Academic Year
Term Fall and Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. SÜLEYMAN BİLGİN KILIÇ
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim is to discover patterns, fundamental relationships, interactions, changes, irregularities, rules, and statistically significant structures within data to generate useful information.

Course Content

concept of data mining and database design, examining data warehousing and other storage techniques. The use of database and data warehouse servers is emphasized, along with the creation, design, and linking of database objects, tables, forms, and subforms. Query creation and design in databases are explored, along with report generation, data summarization, and data cleaning techniques. The process of removing noisy and inconsistent data is examined, along with the application of data mining methods to capture data patterns and evaluate patterns. Information presentation techniques are analyzed to effectively deliver extracted knowledge to users, and the conversion of database objects into HTML and ASP files is discussed. The course also explores database usage and sharing over the Internet, the creation of data access pages, query design, and database security management.

Course Precondition

no prerequisites

Resources

Internet resources of the relevant institution

Notes

Related computer packages


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Gains the ability to think analytically
LO02 Gains the ability to perform statistical analysis using computer
LO03 Gains the ability to produce useful information by means of discovering the patterns, basic relationships, interactions, changes, irregularities, rules, and statistically significant structures in the raw data
LO04 Collect and analyze the data
LO05 Interpret the outputs obtained from estimated model
LO06 Explains the processes, fundamental concepts, and application areas of data mining.
LO07 Applies data storage, data warehousing, and data management processes on large datasets.
LO08 Creates, manages, and applies security measures for database objects.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explains contemporary concepts about Econometrics, Statistics, and Operation Research 3
PLO02 Bilgi - Kuramsal, Olgusal Explains relationships between acquired knowledge about Econometrics, Statistics, and Operation Research 2
PLO03 Bilgi - Kuramsal, Olgusal Explains how to apply acquired knowledge in the field to Economics, Business, and other social sciences
PLO04 Beceriler - Bilişsel, Uygulamalı Performs conceptual analysis to develop solutions to problems 5
PLO05 Beceriler - Bilişsel, Uygulamalı Models problems with Mathematics, Statistics, and Econometrics 3
PLO06 Beceriler - Bilişsel, Uygulamalı Interprets the results obtained from the most appropriate method to predict the model 4
PLO07 Beceriler - Bilişsel, Uygulamalı Synthesizes the information obtained by using different sources within the framework of academic rules in a field of research
PLO08 Beceriler - Bilişsel, Uygulamalı Uses acquired knowledge in the field to determine the vision, aim, and goals for an organization/institution
PLO09 Beceriler - Bilişsel, Uygulamalı Searches for new approaches and methods to solve problems being faced 2
PLO10 Beceriler - Bilişsel, Uygulamalı Presents analysis results conveniently 4
PLO11 Beceriler - Bilişsel, Uygulamalı Collects/analyzes data in a purposeful way
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Converts its findings into a master's thesis or a professional report in Turkish or a foreign language 3
PLO13 Beceriler - Bilişsel, Uygulamalı Develops solutions for organizations using Econometrics, Statistics, and Operation Research 5
PLO14 Beceriler - Bilişsel, Uygulamalı Uses a package program/writes a new code for Econometrics, Statistics, and Operation Research 2
PLO15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Performs an individual work to solve a problem with Econometrics, Statistics, and Operation Research 3
PLO16 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Leads by taking responsibility individually and/or within the team
PLO17 Yetkinlikler - Öğrenme Yetkinliği Being aware of the necessity of lifelong learning, it constantly renews itself by following the current developments in the field of study 3
PLO18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Interprets the feelings, thoughts and behaviors of the related persons correctly/expresses himself/herself correctly in written and verbal form
PLO19 Yetkinlikler - Alana Özgü Yetkinlik Interprets data on economic and social events by following current issues
PLO20 Yetkinlikler - Alana Özgü Yetkinlik Applies social, scientific and professional ethical values


Week Plan

Week Topic Preparation Methods
1 The concept of data mining and design of the database, data warehousing and other storage techniques Research Öğretim Yöntemleri:
Anlatım
2 Database or data warehouse server, creation and expansion of database objects Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
3 Creation, design and connection of database tables Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 Creation and design of the database forms and sub forms Research Öğretim Yöntemleri:
Anlatım
5 Creation and design of database queries Research Öğretim Yöntemleri:
Anlatım, Beyin Fırtınası
6 Creation of reports, design and summary of the data Research Öğretim Yöntemleri:
Anlatım
7 Data cleaning, removal of the noisy and inconsistent data Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
8 Mid-Term Exam Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Pattern evaluation and identification in the data Araştırma Öğretim Yöntemleri:
Anlatım
10 Data mining (application of intelligent methods to capture data patterns) Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Presentation of information ( performing presentation of information to the users) Research Öğretim Yöntemleri:
Anlatım, Problem Çözme
12 Converting HTML and ASP files to database objects Research Öğretim Yöntemleri:
Anlatım
13 Using and sharing the database on the internet Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
14 Creation and use of data access pages, and query design in the data access pages Research Öğretim Yöntemleri:
Anlatım
15 Ensuring the security of the database Research Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
16 Term Exams Term Exams Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 7 98
Assesment Related Works
Homeworks, Projects, Others 4 3 12
Mid-term Exams (Written, Oral, etc.) 2 2 4
Final Exam 2 2 4
Total Workload (Hour) 160
Total Workload / 25 (h) 6,40
ECTS 6 ECTS

Update Time: 27.02.2025 07:54