OMZ210 Heat Transfer

4 ECTS - 3-0 Duration (T+A)- 4. Semester- 3 National Credit

Information

Code OMZ210
Name Heat Transfer
Term 2024-2025 Academic Year
Semester 4. Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 4 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. ALİ KESKİN
Course Instructor
1 2
Doç. Dr. HASAN SERİN (A Group) (Ins. in Charge)


Course Goal / Objective

This course aims to teach the heat transfer problems and basic engineering solutions. It also helps students to formulate the problems in designing hot devices and teach the basic theories so as to design devices that permits heat transfer.

Course Content

1D and 2D steady-state conduction. Transient conduction: Lumped capacitance analysis, multidimensional effects. Convection: thermal boundary layer, boundary layer similarity and Reynolds analogy. Heat transfer in external flows: flat plate, cylinder in cross-flow, sphere. Internal flow: hydrodynamic and thermal considerations, convection correlations. Free convection. Radiation heat transfer. Heat exchanger design.

Course Precondition

The course has no prerequisites.

Resources

Heat and Mass Transfer-Yunus A. Çengel Heat Transfer-Tuncay Yılmaz

Notes

Internet Resources


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Understands the differential equation of heat conduction and boundary conditions in heat conduction.
LO02 Shows heat conduction in plane, cylindrical and spherical bodies.
LO03 Analyzes heat conduction between two environments separated by a wall.
LO04 Understands heat conduction in fins.
LO05 Shows heat transfer in multidimensional objects.
LO06 Explain the boundary conditions in heat conduction.
LO07 It defines common equations for various objects and heat conduction in multi-storey walls.
LO08 Explains the transient heat conduction in objects with high thermal conductivity coefficient.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Adequate knowledge of mathematics, science and subjects specific to the Automotive engineering discipline; Ability to use theoretical and applied knowledge in these fields in solving complex engineering problems. 3
PLO02 Beceriler - Bilişsel, Uygulamalı Ability to identify, formulate and solve complex engineering problems in the field of Automotive Engineering; Ability to select and apply appropriate analysis and modeling methods for this purpose. 4
PLO03 Beceriler - Bilişsel, Uygulamalı In Automotive Engineering, the ability to design a complex system, process, device or product to meet specific requirements under realistic constraints and conditions; Ability to apply modern design methods for this purpose.
PLO04 Beceriler - Bilişsel, Uygulamalı Ability to select and use modern techniques and tools necessary for the analysis and solution of complex problems encountered in Automotive Engineering applications; Ability to use information technologies effectively. 3
PLO05 Beceriler - Bilişsel, Uygulamalı Ability to design, conduct experiments, collect data, analyze and interpret results for the study of complex engineering problems or discipline-specific research topics in the field of Automotive Engineering. 2
PLO06 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Ability to work effectively within disciplines (Automotive Engineering) and in multidisciplinary teams; individual work ability. 2
PLO07 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Ability to communicate effectively verbally and in writing; knowledge of at least one foreign language; Ability to write effective reports and understand written reports in the field of Automotive Engineering, prepare design and production reports, make effective presentations, give and receive clear and understandable instructions. 2
PLO08 Yetkinlikler - Öğrenme Yetkinliği Awareness of the necessity of lifelong learning; Ability to access information in the field of Automotive Engineering, follow developments in science and technology and the ability to constantly renew itself. 3
PLO09 Yetkinlikler - Öğrenme Yetkinliği Knowledge of acting in accordance with ethical principles, professional and ethical responsibility in the field of Automotive Engineering, and standards used in engineering practices.
PLO10 Yetkinlikler - İletişim ve Sosyal Yetkinlik Knowledge of business practices such as project management, risk management and change management in the field of Automotive Engineering; awareness about entrepreneurship and innovation; Information about sustainable development. 2
PLO11 Yetkinlikler - İletişim ve Sosyal Yetkinlik Information about the effects of Automotive Engineering applications on health, environment and safety at universal and social dimensions and the problems of the age reflected in the field of automotive engineering; Awareness of the legal consequences of Automotive Engineering solutions.


Week Plan

Week Topic Preparation Methods
1 Introduction Book Chapter 1 Öğretim Yöntemleri:
Anlatım, Problem Çözme
2 Differential equation of heat transfer Book Chapter 2 Öğretim Yöntemleri:
Anlatım, Problem Çözme
3 Fourier Law, Boundary Conditions Book Chapter 2 Öğretim Yöntemleri:
Anlatım, Problem Çözme
4 Conductive heat transfer at steady-state condition Book Chapter 1 Öğretim Yöntemleri:
Anlatım, Problem Çözme
5 Conductive Heat Transfer at Plain Wall Book Chapter 3 Öğretim Yöntemleri:
Anlatım, Problem Çözme
6 Overall Heat Transfer Coefficient Book Chapter 3 Öğretim Yöntemleri:
Anlatım, Problem Çözme
7 Heat transfer from fins Book Chapter 4 Öğretim Yöntemleri:
Anlatım, Problem Çözme
8 Mid-Term Exam Writing Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Differential Equation of Fin Lecture notes Öğretim Yöntemleri:
Anlatım, Problem Çözme
10 Unsteady-state conductive heat transfer Book Chapter 4 Öğretim Yöntemleri:
Anlatım, Problem Çözme
11 Analytical Calculation Method Book Chapter 6 Öğretim Yöntemleri:
Anlatım, Problem Çözme
12 Force convection in ducts Book Chapter 8 Öğretim Yöntemleri:
Anlatım, Problem Çözme
13 Free and forced convection over bodies Book Chapter 9 Öğretim Yöntemleri:
Anlatım, Problem Çözme
14 Radiation and heat exchangers Book Chapter 10-14 Öğretim Yöntemleri:
Anlatım, Problem Çözme
15 Lecture Summary Lecture notes and reference books Öğretim Yöntemleri:
Anlatım, Problem Çözme
16 Term Exams Writing Exam Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Writing Exam Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 7 7
Final Exam 1 18 18
Total Workload (Hour) 109
Total Workload / 25 (h) 4,36
ECTS 4 ECTS

Update Time: 13.05.2024 10:28