MT576 Category Theory

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF NATURAL AND APPLIED SCIENCES
MATHEMATICS (MASTER) (WITH THESIS)
Code MT576
Name Category Theory
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. YILMAZ DURĞUN
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

By the end of this course, students will understand the fundamental principles of category theory, be able to analyze various mathematical structures and relationships through category theory, and apply this knowledge in different mathematical fields.

Course Content

Foundations of Category Theory, Basic Properties of Categories, Functors (Functional Structures), Natural Transformations, Relationships Between Categories, Kernels and Categorical Kernels, Limits and Colimits, Finite Limits, Infinite Limits, Monoids and Group Categories, Abelian Categories, Categorical Geometry, Categories and Topological Spaces.

Course Precondition

None

Resources

Mac Lane, S. (1971). Categories for the Working Mathematician (Graduate Texts in Mathematics). Awodey, S. (2010). Category Theory (Oxford Logic Guides).

Notes

Borceux, F. (1994). Handbook of Categorical Algebra Vol. 1, 2, and 3 (Encyclopedia of Mathematics and its Applications).


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Learns the relationship between categories, objects, and morphisms.
LO02 Understand the role of category theory in the study of mathematical structures.
LO03 Learn about functors and natural transformations.
LO04 They learn the structural aspects of category theory.
LO05 Understands interactions between categories.
LO06 Explores abstract connections between mathematical structures through category theory.
LO07 Can integrate mathematical concepts from different fields through category theory.
LO08 They learn to construct logical arguments.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Knows in detail the relationship between the results in her area of expertise and other areas of mathematics.
PLO02 Bilgi - Kuramsal, Olgusal Knows in detail the relationship between the results in his area of ​​expertise and other areas of mathematics. 5
PLO03 Bilgi - Kuramsal, Olgusal Establishes new mathematical models with the help of the knowledge gained in the field of specialization. 4
PLO04 Bilgi - Kuramsal, Olgusal Has basic knowledge in all areas of mathematics. 4
PLO05 Bilgi - Kuramsal, Olgusal It presents the knowledge gained in different fields of mathematics and their relations with each other in the simplest and most understandable way. 3
PLO06 Bilgi - Kuramsal, Olgusal Effectively uses the technical equipment needed to express mathematics. 3
PLO07 Bilgi - Kuramsal, Olgusal poses original problems related to field and presents different solution techniques. 4
PLO08 Bilgi - Kuramsal, Olgusal carries out original and qualified scientific studies on the subject related to its field. 3
PLO09 Bilgi - Kuramsal, Olgusal Analyzes existing mathematical theories and develops new theories. 4
PLO10 Beceriler - Bilişsel, Uygulamalı Knows the teaching-learning techniques in areas of mathematics that require expertise and uses these techniques effectively at every stage of education.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği To have knowledge of a foreign language at a level to be able to follow foreign sources related to the field and to communicate verbally and in writing with foreign stakeholders.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği presents and publishes its original works within the framework of scientific ethical rules for the benefit of its stakeholders.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Adheres to the ethical rules required by its scientific title


Week Plan

Week Topic Preparation Methods
1 Foundations of Category Theory Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
2 Basic Properties of Categories Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
3 Functors-1 Required reading Öğretim Yöntemleri:
Anlatım, Tartışma
4 Functors-2 Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
5 Natural Transformations Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
6 Relationships Between Categories Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
7 Kernels and Categorical Kernels Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
8 Mid-Term Exam Required readings Ölçme Yöntemleri:
Yazılı Sınav
9 Limits Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
10 Colimits Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
11 Finite Limits Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
12 Infinite Limits Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
13 Monoids and Group Categories Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
14 Abelian Categories Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
15 Categorical Geometry Required readings Öğretim Yöntemleri:
Anlatım, Tartışma
16 Term Exams Required readings Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Required readings Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 30 30
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 28.04.2025 02:05