Information
Unit | INSTITUTE OF NATURAL AND APPLIED SCIENCES |
REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (PhD) | |
Code | UA604 |
Name | Spatial Statistical Modeling Methods-II |
Term | 2025-2026 Academic Year |
Term | Spring |
Duration (T+A) | 3-0 (T-A) (17 Week) |
ECTS | 6 ECTS |
National Credit | 3 National Credit |
Teaching Language | Türkçe |
Level | Belirsiz |
Type | Normal |
Mode of study | Yüz Yüze Öğretim |
Catalog Information Coordinator | Prof. Dr. NİYAZİ ARSLAN |
Course Instructor |
The current term course schedule has not been prepared yet.
|
Course Goal / Objective
To demonstrate the application of statistical techniques to the estimate of environmental parameters.
Course Content
Thermal satellites, Hotspot analysis, Anselin Local Moran I statistical method, Thermal image analysis, Application of statistical methods to thermal images, Monitoring of thermal changes in industrial facilities
Course Precondition
There are no prerequisites
Resources
Arslan, N. (2018). Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors. Environ Monit Assess 190, 637. https://doi.org/10.1007/s10661-018-7017-4 Arslan, N., Majidi Nezhad, M., Heydari, A., Astiaso Garcia, D., & Sylaios, G. (2023). A Principal Component Analysis Methodology of Oil Spill Detection and Monitoring Using Satellite Remote Sensing Sensors. Remote Sensing, 15(5), 1460. https://doi.org/10.3390/rs15051460 Arslan, N. (2018). Identification of hotspots using different statistical methods in a region of manufacturing plants. Environ Monit Assess 190, 550. https://doi.org/10.1007/s10661-018-6939-1 Sekertekin, A, Arslan, N., (2019). Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery – A case study at Tuzla geothermal region, Geothermics,78(243-254), https://doi.org/10.1016/j.geothermics.2018.12.014. Claudia Kuenzer, Stefan Dech (eds), (2013). Thermal Infrared Remote Sensing Sensors, Methods, Applications, ISBN:978-94-007-6639-6, Springer Ying Li (2023). Oil Spill Detection, Identification, and Tracing. 1st Edition, ISBN-13: 978-0443137785, Elseiver
Notes
Anselin, L. (1995). Local Indicators of Spatial Association—LISA. Fotheringham, A. S., Brunsdon, C., Charlton, M. (2000). Quantitative Geography: Perspectives on Spatial Data Analysis. Bailey, T., Gatrell, A. (1995). Interactive Spatial Data Analysis. Recent articles and lecture notes.
Course Learning Outcomes
Order | Course Learning Outcomes |
---|---|
LO01 | Uses basic knowledge of statistical methods |
LO02 | It estimates environmental parameters with the use of satellite technologies. |
LO03 | Analyzes environmental parameters. |
LO04 | Computes and analyzes information from satellite systems. |
Relation with Program Learning Outcome
Order | Type | Program Learning Outcomes | Level |
---|---|---|---|
PLO01 | Bilgi - Kuramsal, Olgusal | At the end of the programme, the students acquire advanced knowledge on remote sensing and GIS theory. | 5 |
PLO02 | Bilgi - Kuramsal, Olgusal | The students gain knowledge on remote sensing technologies, sensors and platforms and remotely sensed data. | 5 |
PLO03 | Bilgi - Kuramsal, Olgusal | The students generate information using remotely sensed data and GIS together with database management skills. | |
PLO04 | Bilgi - Kuramsal, Olgusal | The students develop the necessary skills for selecting and using appropriate techniques and tools for engineering practices, using information technologies effectively, and collecting, analysing and interpreting data. | 5 |
PLO05 | Bilgi - Kuramsal, Olgusal | The students gain knowledge to use current data and methods for multi-disciplinary research. | 5 |
PLO06 | Bilgi - Kuramsal, Olgusal | The students gain technical competence and skills in using recent GIS and remote sensing software. | |
PLO07 | Bilgi - Kuramsal, Olgusal | The students acquire knowledge on potential practical fields of use of remotely sensed data, and use their theoretical and practical knowledge for problem solution in the related professional disciplines. | 5 |
PLO08 | Yetkinlikler - Öğrenme Yetkinliği | Students will be able to calculate and interpret physical and atmospheric variables by processing the satellite data. | |
PLO09 | Yetkinlikler - Öğrenme Yetkinliği | Students can generate data for GIS projects using Remote Sensing techniques. | |
PLO10 | Bilgi - Kuramsal, Olgusal | Gains the ability to analyze and interpret geographic data with GIS techniques. | |
PLO11 | Bilgi - Kuramsal, Olgusal | Gains the ability of problem solving, solving, solution oriented application development. | |
PLO12 | Yetkinlikler - Öğrenme Yetkinliği | Acquires the ability to acquire, evaluate, record and apply information from satellite data. | 5 |
Week Plan
Week | Topic | Preparation | Methods |
---|---|---|---|
1 | What are environmental parameters? Why are statistical methods important? What is thermal analysis? | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
2 | Literature discussion | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
3 | Literature discussion will be done | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
4 | Determination of land surface temperature change by statistical methods | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
5 | Spatial Statistical Modeling: Hotspot analysis | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
6 | Getis Ord Gi Statistics | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
7 | Anselin Local Moran I Statistics | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
8 | Mid-Term Exam | Ölçme Yöntemleri: Yazılı Sınav |
|
9 | Application of statistical methods to thermal images: Getis Ord Gi | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
10 | research of Application of statistical methods to thermal images: Anselin Local Moran I | Publication, Book | Öğretim Yöntemleri: Anlatım, Tartışma, Soru-Cevap |
11 | Applications | Publication, Book, Software | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma |
12 | Monitoring thermal changes in industrial facilities with satellite systems: Data preparation | Publication, Book, Software | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma |
13 | Monitoring thermal changes in industrial facilities with satellite systems: Data analysis | Publication, Book, Software | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma |
14 | Monitoring thermal changes in thermal waters with satellite systems: Data preparation | Publication, Book, Software | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma |
15 | Monitoring thermal changes in thermal waters with satellite systems: Data analysis | Publication, Book, Software | Öğretim Yöntemleri: Anlatım, Tartışma, Alıştırma ve Uygulama, Gösterip Yaptırma |
16 | Term Exams | Ölçme Yöntemleri: Yazılı Sınav |
|
17 | Term Exams | Ölçme Yöntemleri: Yazılı Sınav |
Student Workload - ECTS
Works | Number | Time (Hour) | Workload (Hour) |
---|---|---|---|
Course Related Works | |||
Class Time (Exam weeks are excluded) | 14 | 3 | 42 |
Out of Class Study (Preliminary Work, Practice) | 14 | 4 | 56 |
Assesment Related Works | |||
Homeworks, Projects, Others | 2 | 6 | 12 |
Mid-term Exams (Written, Oral, etc.) | 1 | 20 | 20 |
Final Exam | 1 | 24 | 24 |
Total Workload (Hour) | 154 | ||
Total Workload / 25 (h) | 6,16 | ||
ECTS | 6 ECTS |