YZZ105 Linear Algebra

5 ECTS - 3-1 Duration (T+A)- 1. Semester- 3.5 National Credit

Information

Unit FACULTY OF SCIENCE AND LETTERS
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING PR. (ENGLISH)
Code YZZ105
Name Linear Algebra
Term 2025-2026 Academic Year
Semester 1. Semester
Duration (T+A) 3-1 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3.5 National Credit
Teaching Language İngilizce
Level Lisans Dersi
Type Normal
Label BS Basic Science Courses C Compulsory
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜZİN YÜKSEL
Course Instructor Dr. Öğr. Üyesi Emrah KORKMAZ (Güz) (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of this course is to provide knowledge and skills regarding the concrete aspects of linear algebra in the research process.

Course Content

Matrices and Homogeneous, Linear Equation Systems, solving systems with the help of matrices, understanding vector spaces and abstract mathematical expressions constitute the content of this course.

Course Precondition

None

Resources

Bernard Kolman, David R. Hill, Lineer Cebir (Çeviri ) Palme Yayıncılık,2000.

Notes

Arif Sabuncuoğlu, Lineer Cebir, Nobel yayın dağıtım,2000.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Distinguish between matrices and matrix operations.
LO02 It brings matrices into echelon form by Gaussian Elimination and Gauss-Jordan Reduction.
LO03 It uses the inverse of the matrix to solve systems.
LO04 Determinant calculations.
LO05 Solve systems using Cramer's rule.
LO06 Can draw vectors on the plane and in space and perform vector operations.
LO07 Uses the basic concepts of Vector Spaces.
LO08 Writes the linear spacing space.
LO09 Determines linear dependence and independence of vectors.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal It provides a broad range of knowledge about fundamental Computer Science concepts, algorithms and data structures. 3
PLO02 Bilgi - Kuramsal, Olgusal Learns basic computer topics such as software development, programming languages, and database management.
PLO03 Bilgi - Kuramsal, Olgusal Understands advanced computing fields such as data science, artificial intelligence, and machine learning.
PLO04 Belirsiz Learn about topics such as computer networks, cyber security, and database design.
PLO05 Beceriler - Bilişsel, Uygulamalı Develops skills in designing, implementing and analyzing algorithms. 4
PLO06 Beceriler - Bilişsel, Uygulamalı Gains the ability to use different programming languages effectively
PLO07 Beceriler - Bilişsel, Uygulamalı Learns data analysis, database management and big data processing skills.
PLO08 Beceriler - Bilişsel, Uygulamalı Gains practical experience by working on software development projects.
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Strengthens collaboration and communication skills within the team.
PLO10 Yetkinlikler - Alana Özgü Yetkinlik It provides a mindset open to technological innovations. 3
PLO11 Yetkinlikler - Öğrenme Yetkinliği Encourages continuous learning and self-improvement competence. 4
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Develops the ability to solve complex problems. 4


Week Plan

Week Topic Preparation Methods
1 Systems of Linear Equations Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
2 Matrices and matrix operations Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
3 Properties of matrix operations and special types of matrices Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 Echelon form of a matrix and Elementary matrices Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
5 Gauss Jordan and Gaussian Reduction Method Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
6 Finding the inverse of a matrix and solving the system Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
7 Determinant function and its properties Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
8 Mid-Term Exam Repetition of the topics covered from lecture notes and resources Ölçme Yöntemleri:
Yazılı Sınav
9 Solution of Cramer systems using determinants Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
10 Vectors in the Plane and in Space Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Vector Spaces Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 Subspaces Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
13 Linear Spatial Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
14 Linear dependence and independence Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
15 Problem Solving, final exam Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
16 Term Exams Repetition of the topics covered from lecture notes and resources Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Repetition of the topics covered from lecture notes and resources Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 26 26
Total Workload (Hour) 136
Total Workload / 25 (h) 5,44
ECTS 5 ECTS

Update Time: 28.08.2025 02:43