YZZ105 Linear Algebra

5 ECTS - 3-1 Duration (T+A)- 1. Semester- 3.5 National Credit

Information

Unit FACULTY OF SCIENCE AND LETTERS
ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING PR. (ENGLISH)
Code YZZ105
Name Linear Algebra
Term 2025-2026 Academic Year
Semester 1. Semester
Duration (T+A) 3-1 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3.5 National Credit
Teaching Language İngilizce
Level Lisans Dersi
Type Normal
Label BS Basic Science Courses C Compulsory
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GÜZİN YÜKSEL
Course Instructor Dr. Öğr. Üyesi Emrah KORKMAZ (Güz) (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of this course is to equip students with the linear algebra concepts and methods they will need in the field of artificial intelligence, presented in a clear and comprehensible manner.

Course Content

The topics included in this course are Systems of Linear Equations and Matrices, Determinants, Euclidean Vector Spaces, and General Vector Spaces.

Course Precondition

None

Resources

Howard Anton, Chris Rorres, Elementary Linear Algebra: Applications Version, 11th Edition. Otto Bretscher, Linear Algebra with Applications, Fifth Edition.

Notes

Related digital resources


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Distinguish between matrices and matrix operations.
LO02 It brings matrices into echelon form by Gaussian Elimination and Gauss-Jordan Reduction.
LO03 It uses the inverse of the matrix to solve systems.
LO04 Determinant calculations.
LO05 Solve systems using Cramer's rule.
LO06 Can draw vectors on the plane and in space and perform vector operations.
LO07 Uses the basic concepts of Vector Spaces.
LO08 Writes the linear spacing space.
LO09 Determines linear dependence and independence of vectors.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal It provides a broad range of knowledge about fundamental Computer Science concepts, algorithms and data structures. 3
PLO02 Bilgi - Kuramsal, Olgusal Learns basic computer topics such as software development, programming languages, and database management.
PLO03 Bilgi - Kuramsal, Olgusal Understands advanced computing fields such as data science, artificial intelligence, and machine learning.
PLO04 Belirsiz Learn about topics such as computer networks, cyber security, and database design.
PLO05 Beceriler - Bilişsel, Uygulamalı Develops skills in designing, implementing and analyzing algorithms. 4
PLO06 Beceriler - Bilişsel, Uygulamalı Gains the ability to use different programming languages effectively
PLO07 Beceriler - Bilişsel, Uygulamalı Learns data analysis, database management and big data processing skills.
PLO08 Beceriler - Bilişsel, Uygulamalı Gains practical experience by working on software development projects.
PLO09 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Strengthens collaboration and communication skills within the team.
PLO10 Yetkinlikler - Alana Özgü Yetkinlik It provides a mindset open to technological innovations. 3
PLO11 Yetkinlikler - Öğrenme Yetkinliği Encourages continuous learning and self-improvement competence. 4
PLO12 Yetkinlikler - İletişim ve Sosyal Yetkinlik Develops the ability to solve complex problems. 4


Week Plan

Week Topic Preparation Methods
1 Introduction to Systems of Linear Equations and Gaussian Elimination Method Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
2 Matrices and Matrix Operations, Inverses; Algebraic Properties of Matrices Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
3 Elementary Matrices and Method for Finding A −1 Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 More on Linear Systems and Invertible Matrices, Diagonal, Triangular, and Symmetric Matrices Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
5 Determinants by Cofactor Expansion Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
6 Evaluating Determinants by Row Reduction Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
7 Properties of Determinants and Cramer’s Rule Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
8 Mid-Term Exam Repetition of the topics covered from lecture notes and resources Ölçme Yöntemleri:
Yazılı Sınav
9 Vectors in 2-Space, 3-Space, and n-Space Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
10 Norm, Dot Product, and Distance in Rⁿ Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Real Vector Spaces and Subspaces Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 Linear Independence Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
13 Coordinates and Basis Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
14 Row space, Column space and Null space Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
15 Rank, Nullity, and Fundamental Matrix Spaces Reading relevant sections of course materials Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
16 Term Exams Repetition of the topics covered from lecture notes and resources Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Repetition of the topics covered from lecture notes and resources Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 18 18
Total Workload (Hour) 128
Total Workload / 25 (h) 5,12
ECTS 5 ECTS

Update Time: 25.09.2025 03:51