TVS103 Use of Artificial Intelligence in Healthcare

3 ECTS - 2-0 Duration (T+A)- 1. Semester- 2 National Credit

Information

Unit ABDİ SÜTCÜ HEALTH SERVICES VOCATIONAL SCHOOL
MEDICAL DATA PROCESSING TECHNICIAN PR.
Code TVS103
Name Use of Artificial Intelligence in Healthcare
Term 2025-2026 Academic Year
Semester 1. Semester
Duration (T+A) 2-0 (T-A) (17 Week)
ECTS 3 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Belirsiz
Type Normal
Label E Elective
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. ŞULE SULTAN MENZİLETOĞLU YILDIZ
Course Instructor (Güz) (A Group) ()


Course Goal / Objective

This course introduces the applications of artificial intelligence (AI) and machine learning (ML) in healthcare. Students will learn about the fundamental principles of AI, types of algorithms, healthcare data analysis, the use of AI in diagnostic and therapeutic support systems, ethical issues, and current best practices.

Course Content

This course introduces the applications of artificial intelligence (AI) and machine learning (ML) in healthcare. Students will learn about the fundamental principles of AI, types of algorithms, healthcare data analysis, the use of AI in diagnostic and therapeutic support systems, ethical issues, and current best practices.

Course Precondition

None

Resources

Lecture notes to be given by the instructor

Notes

Lecture notes to be given by the instructor


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Describes artificial intelligence applications used in health informatics.
LO02 Analyzes artificial intelligence algorithms at a basic level.
LO03 Evaluates the ethical aspects of artificial intelligence systems working with health data.
LO04 Develops a simple AI solution for a health problem.
LO05 Explains the basic concepts and techniques of artificial intelligence.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Defines the concept of health informatics. 5
PLO02 Bilgi - Kuramsal, Olgusal Explains the types and sources of health data.
PLO03 Belirsiz Analyzes the processing, storage and sharing of health data
PLO04 Belirsiz Summarizes the structure and function of health information systems. 4
PLO05 Belirsiz Evaluates the effects of digitalization in healthcare.


Week Plan

Week Topic Preparation Methods
1 Introduction to artificial intelligence and basic concepts Lucture Notes Öğretim Yöntemleri:
Soru-Cevap
2 Introduction to machine learning and deep learning Lucture Notes Öğretim Yöntemleri:
Soru-Cevap
3 Overview of artificial intelligence in health informatics Lucture Notes Öğretim Yöntemleri:
Beyin Fırtınası
4 Collection and preparation of health data Lucture Notes Öğretim Yöntemleri:
Tartışma
5 Classification algorithms and their usage areas Lucture Notes Öğretim Yöntemleri:
Soru-Cevap
6 Health data analysis with regression algorithms Lucture Notes Öğretim Yöntemleri:
Beyin Fırtınası
7 Image recognition systems (Radiology examples) Lucture Notes Öğretim Yöntemleri:
Soru-Cevap
8 Mid-Term Exam Ölçme Yöntemleri:
Yazılı Sınav
9 Natural Language Processing (NLP) and patient records Lucture Notes Öğretim Yöntemleri:
Anlatım
10 Clinical decision support systems Lucture Notes Öğretim Yöntemleri:
Anlatım, Soru-Cevap
11 Ethical and legal aspects of artificial intelligence applications Lucture Notes Öğretim Yöntemleri:
Örnek Olay, Soru-Cevap
12 Simple AI project planning Lucture Notes Öğretim Yöntemleri:
Tartışma, Anlatım
13 Application example: Patient risk classification model Lucture Notes Öğretim Yöntemleri:
Soru-Cevap
14 End-of-term general evaluation and project presentations Lucture Notes Öğretim Yöntemleri:
Soru-Cevap
15 Project presentation Lucture Notes Öğretim Yöntemleri:
Anlatım
16 Term Exams Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 1 14
Assesment Related Works
Homeworks, Projects, Others 1 1 1
Mid-term Exams (Written, Oral, etc.) 1 1 1
Final Exam 1 1 1
Total Workload (Hour) 73
Total Workload / 25 (h) 2,92
ECTS 3 ECTS

Update Time: 26.08.2025 04:26