BIST517 Biostatistics with Software Packages

6 ECTS - 2-2 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST517
Name Biostatistics with Software Packages
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 2-2 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Dr. Öğr. Üyesi Yusuf Kemal ARSLAN
Course Instructor Doç. Dr. YAŞAR SERTDEMİR (Bahar) (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of this course is to enable students to effectively use statistical software packages in health research, select and apply appropriate analytical methods, and clearly report statistical results in a scientific manner.

Course Content

This course focuses on performing data analysis using statistical software packages commonly used in health sciences (e.g., SPSS). Topics include data entry and management, descriptive statistics, graphical displays, parametric and non-parametric tests, correlation, basic regression, and reporting results using tables and graphs. The course is conducted in a hands-on manner using health-related datasets.

Course Precondition

No prerequisites. (Completion of Basic Concepts in Biostatistics is recommended.)

Resources

Özdamar, K. Paket Programlar ile İstatistiksel Veri Analizi Field, A. Discovering Statistics Using SPSS

Notes

Open-access health datasets Recent applied biostatistics articles


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain the basic interface and functions of statistical software packages.
LO02 Enter, manage, and organize health-related data using software packages.
LO03 Calculate and interpret descriptive statistics using statistical software.
LO04 Apply appropriate parametric and non-parametric tests.
LO05 Perform and interpret correlation and basic regression analyses.
LO06 Report analysis results using tables and graphical outputs.
LO07 Evaluate statistical outputs within a scientific and clinical context.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences. 2
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes.
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences.
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 4
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 5
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences.
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context.
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches.
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project. 3
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 2
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 2
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings. 2


Week Plan

Week Topic Preparation Methods
1 Course introduction; introduction to statistical software packages Reading Öğretim Yöntemleri:
Anlatım
2 Data entry and data management Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
3 Descriptive statistics Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 Graphs and visualization Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
5 Parametric tests (t-test, ANOVA) Reading Öğretim Yöntemleri:
Anlatım
6 Non-parametric tests Reading Öğretim Yöntemleri:
Anlatım
7 Correlation analysis Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Simple linear regression Reading Öğretim Yöntemleri:
Anlatım
10 Interpretation of outputs Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
11 Applications using health datasets I Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama, Soru-Cevap
12 Applications using health datasets II Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama, Soru-Cevap
13 Reporting statistical results I Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama, Tartışma
14 Reporting statistical results II Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama, Tartışma
15 General review and evaluation Reading Öğretim Yöntemleri:
Soru-Cevap
16 Term Exams Ölçme Yöntemleri:
Ödev
17 Term Exams Ölçme Yöntemleri:
Ödev


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 4 56
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 12.01.2026 04:55