BIST522 Multiple Regression and Modeling

7 ECTS - 3-2 Duration (T+A)- . Semester- 4 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST522
Name Multiple Regression and Modeling
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 3-2 (T-A) (17 Week)
ECTS 7 ECTS
National Credit 4 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. İLKER ÜNAL
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to enable students to build multiple regression models for health-specific data, correctly interpret model results from statistical and clinical perspectives, and evaluate relationships between variables in an evidence-based manner.

Course Content

This course covers multiple regression and statistical modeling approaches used in health sciences. Topics include multiple linear regression, logistic regression for binary outcomes, model-building strategies, variable selection, interaction terms, confounding, model assumptions, multicollinearity, goodness-of-fit measures, and interpretation of results within clinical and epidemiological contexts. Applications are conducted using real health-related datasets.

Course Precondition

No prerequisites. (Completion of Basic Concepts in Biostatistics and Biostatistics Using Software Packages is recommended.)

Resources

Hosmer, D. W., Lemeshow, S. Applied Logistic Regression Kleinbaum, D. G., Kupper, L. L., Muller, K. E. Applied Regression Analysis and Other Multivariable Methods

Notes

Recent clinical and epidemiological regression studies


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain the purpose of multiple regression models in health sciences.
LO02 Select appropriate regression models for continuous and binary health outcomes.
LO03 Assess confounding and interaction effects during model building.
LO04 Test model assumptions.
LO05 Evaluate model fit and performance using appropriate measures.
LO06 Interpret regression results within clinical and epidemiological contexts.
LO07 Present model results in accordance with scientific reporting standards.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences. 2
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes. 2
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences. 5
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 5
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 3
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences.
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context. 4
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches.
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 3
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 2
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings. 4


Week Plan

Week Topic Preparation Methods
1 Course introduction; overview of multiple regression Reading Öğretim Yöntemleri:
Anlatım
2 Regression logic in health data Reading Öğretim Yöntemleri:
Anlatım
3 Multiple linear regression Reading Öğretim Yöntemleri:
Anlatım
4 Variable selection and model building Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
5 Introduction to logistic regression Reading Öğretim Yöntemleri:
Anlatım
6 Interpretation of logistic regression Reading Öğretim Yöntemleri:
Anlatım
7 Confounding and interaction effects Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Model assumptions Reading Öğretim Yöntemleri:
Anlatım
10 Multicollinearity Reading Öğretim Yöntemleri:
Anlatım
11 Goodness-of-fit measures Reading Öğretim Yöntemleri:
Anlatım
12 Clinical and epidemiological applications Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama, Anlatım
13 Reporting regression results Reading Öğretim Yöntemleri:
Anlatım, Tartışma, Alıştırma ve Uygulama
14 General review and application I Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama
15 General review and application II Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama
16 Term Exams Ölçme Yöntemleri:
Ödev
17 Term Exams Ölçme Yöntemleri:
Ödev


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 5 70
Out of Class Study (Preliminary Work, Practice) 14 5 70
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 185
Total Workload / 25 (h) 7,40
ECTS 7 ECTS

Update Time: 12.01.2026 04:57