BIST523 Advanced Statistical Methods in Medicine

6 ECTS - 2-2 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST523
Name Advanced Statistical Methods in Medicine
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 2-2 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. YAŞAR SERTDEMİR
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to enable students to understand advanced statistical methods suitable for health-specific data structures, select appropriate techniques, and correctly interpret results in clinical and field applications.

Course Content

This course covers advanced statistical methods used in health sciences. Topics include distributional characteristics of health data, advanced parametric and non-parametric methods, logistic regression, survival analysis (Kaplan–Meier, Cox regression), repeated measures, generalized linear models, multivariate analysis approaches, model assumptions, and interpretation of results within clinical and epidemiological contexts. Applications are conducted using real-world health datasets.

Course Precondition

No prerequisites. (Completion of a basic biostatistics course is recommended.)

Resources

Kleinbaum, D. G., Klein, M. Survival Analysis: A Self-Learning Text

Notes

Lecturer's course notes


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Define advanced statistical methods specific to health sciences.
LO02 Select appropriate advanced statistical techniques for different health data types.
LO03 Explain the purposes and applications of logistic regression and survival analysis.
LO04 Interpret analyses based on multivariate and repeated-measures data.
LO05 Evaluate model assumptions and explain results within a clinical context.
LO06 Present advanced statistical analysis results in accordance with scientific reporting standards.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences. 2
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes. 2
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences. 4
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 5
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 3
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences.
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context. 5
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches.
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 2
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 2
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings. 4


Week Plan

Week Topic Preparation Methods
1 Course introduction; characteristics of health data Reading Öğretim Yöntemleri:
Anlatım
2 Introduction to advanced parametric and non-parametric methods Reading Öğretim Yöntemleri:
Anlatım
3 Introduction to logistic regression Reading Öğretim Yöntemleri:
Anlatım
4 Interpretation of logistic regression Reading Öğretim Yöntemleri:
Anlatım, Tartışma
5 Introduction to survival analysis Reading Öğretim Yöntemleri:
Anlatım
6 Kaplan–Meier methods Reading Öğretim Yöntemleri:
Anlatım
7 Cox regression model Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Repeated measures and longitudinal data Reading Öğretim Yöntemleri:
Anlatım
10 Generalized linear models Reading Öğretim Yöntemleri:
Anlatım
11 Introduction to multivariate analyses Reading Öğretim Yöntemleri:
Anlatım
12 Model assumptions and goodness-of-fit Reading Öğretim Yöntemleri:
Anlatım
13 Applied examples from health sciences Reading Öğretim Yöntemleri:
Anlatım
14 General review Reading Öğretim Yöntemleri:
Alıştırma ve Uygulama, Soru-Cevap, Tartışma
15 Evaluation of applications Reading Öğretim Yöntemleri:
Soru-Cevap, Tartışma
16 Term Exams Ölçme Yöntemleri:
Proje / Tasarım, Ödev
17 Term Exams Ölçme Yöntemleri:
Proje / Tasarım, Ödev


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 4 56
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 12.01.2026 04:57