BIST525 Introduction to R Programming

5 ECTS - 1-2 Duration (T+A)- . Semester- 2 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST525
Name Introduction to R Programming
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 1-2 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. YAŞAR SERTDEMİR
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to enable students to learn the R programming language at a basic level for use in health research, perform data analysis and visualization, and generate statistical results in a reproducible and transparent manner.

Course Content

This course introduces the fundamentals of the R programming language, the RStudio environment, data types and data structures, data import, data cleaning and transformation, basic programming constructs (functions, loops), script writing, basic statistical analyses, data visualization (ggplot2), applications using health-related datasets, and reporting of analytical outputs. The course is conducted hands-on using real health data.

Course Precondition

No prerequisites. (Basic biostatistics knowledge is recommended.)

Resources

R Yazılımına Giriş Özlem İlk ODTÜ GELİŞTİRME VAKFI YAYINCILIK - AKADEMİK KİTAPLAR

Notes

CRAN (Comprehensive R Archive Network) documentation RStudio learning resources Open-access health datasets and example codes


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain the R programming environment and basic syntax.
LO02 Import and manage health-related data in R.
LO03 Write scripts using basic programming constructs.
LO04 Perform basic statistical analyses using R.
LO05 Visualize analytical results using appropriate graphical methods.
LO06 Ensure reproducibility of code and analytical outputs.
LO07 Present R-based results in accordance with scientific reporting standards.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences.
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes.
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences.
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 2
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 4
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences. 2
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context.
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches.
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project. 1
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 1
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 1
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings.


Week Plan

Week Topic Preparation Methods
1 Course introduction; introduction to R and RStudio Reading Öğretim Yöntemleri:
Anlatım
2 Data types and data structures Reading Öğretim Yöntemleri:
Anlatım
3 Data import and data manipulation Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
4 Basic programming constructs Reading Öğretim Yöntemleri:
Anlatım
5 Writing functions Reading Öğretim Yöntemleri:
Anlatım
6 Introduction to data visualization Reading Öğretim Yöntemleri:
Anlatım
7 Graphics with ggplot2 Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Basic statistical analyses Reading Öğretim Yöntemleri:
Anlatım
10 Data cleaning and transformation Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Applications using health datasets Reading Öğretim Yöntemleri:
Anlatım
12 Reproducible analysis and reporting Reading Öğretim Yöntemleri:
Soru-Cevap, Anlatım
13 Practical exercises Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
14 General review Reading Öğretim Yöntemleri:
Soru-Cevap, Tartışma, Anlatım
15 Project evaluation Reading Öğretim Yöntemleri:
Soru-Cevap, Tartışma
16 Term Exams Ölçme Yöntemleri:
Proje / Tasarım, Ödev
17 Term Exams Ölçme Yöntemleri:
Proje / Tasarım, Ödev


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 129
Total Workload / 25 (h) 5,16
ECTS 5 ECTS

Update Time: 12.01.2026 04:58