BIST527 Analysis of Genetic Data

5 ECTS - 1-2 Duration (T+A)- . Semester- 2 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST527
Name Analysis of Genetic Data
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 1-2 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. YAŞAR SERTDEMİR
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to enable students to understand the basic structure of genetic data, become familiar with fundamental genetic data analysis methods used in health sciences, and interpret analysis results from clinical and epidemiological perspectives.

Course Content

This course covers genetic and genomic data types used in health sciences, basic molecular genetics concepts, genotype–phenotype relationships, types of genetic variation (SNPs, indels), genetic data formats, quality control steps, basic genetic statistics, univariate and multivariate analysis approaches, association analyses, and interpretation of results in clinical and epidemiological contexts. Applications are conducted using real or example genetic datasets.

Course Precondition

No prerequisites. (Basic knowledge of biostatistics is recommended.)

Resources

Bush, W. S., Moore, J. H. Genome-Wide Association Studies Lewis, C. M. Statistical Genetics Hartl, D. L., Clark, A. G. Principles of Population Genetics

Notes

Recent genetic epidemiology research articles


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain types of genetic data used in health sciences.
LO02 Define the basic statistical properties of genetic data.
LO03 Describe basic quality control steps for genetic datasets.
LO04 Evaluate associations between genetic variants and diseases using basic analytical methods.
LO05 Interpret genetic analysis results within clinical and epidemiological contexts.
LO06 Explain ethical and privacy principles in genetic data analysis.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences.
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes.
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences. 2
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 3
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 2
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences.
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context.
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches. 5
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 1
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 2
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings. 2


Week Plan

Week Topic Preparation Methods
1 Course introduction; overview of genetic data analysis Reading Öğretim Yöntemleri:
Anlatım
2 Basic molecular genetics concepts Reading Öğretim Yöntemleri:
Anlatım
3 Types of genetic variation Reading Öğretim Yöntemleri:
Anlatım
4 Genetic data formats Reading Öğretim Yöntemleri:
Anlatım
5 Quality control in genetic data Reading Öğretim Yöntemleri:
Anlatım
6 Basic genetic statistics Reading Öğretim Yöntemleri:
Anlatım
7 Genotype–phenotype relationships Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Introduction to association analyses Reading Öğretim Yöntemleri:
Anlatım
10 Univariate genetic analyses Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
11 Introduction to multivariate genetic analyses Reading Öğretim Yöntemleri:
Anlatım, Alıştırma ve Uygulama
12 Genetic epidemiology and interpretation Reading Öğretim Yöntemleri:
Anlatım, Tartışma
13 Ethics, privacy, and data security Reading Öğretim Yöntemleri:
Anlatım
14 General review Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
15 Evaluation of applications Reading Öğretim Yöntemleri:
Soru-Cevap, Tartışma
16 Term Exams Ölçme Yöntemleri:
Ödev, Proje / Tasarım
17 Term Exams Ölçme Yöntemleri:
Ödev, Proje / Tasarım


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 129
Total Workload / 25 (h) 5,16
ECTS 5 ECTS

Update Time: 12.01.2026 04:59