BIST529 Machine Learning and Image Processing

6 ECTS - 2-2 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF MEDICAL SCIENCES
BIOSTATISTICS (MEDICINE) (MASTER) (WITHOUT THESIS) (EVENING EDUCATION)
Code BIST529
Name Machine Learning and Image Processing
Term 2025-2026 Academic Year
Term Spring
Duration (T+A) 2-2 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisansüstü Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. İLKER ÜNAL
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to enable students to understand basic machine learning and image processing methods used in health sciences, recognize appropriate application areas, and interpret results from a clinical decision-support perspective.

Course Content

This course covers machine learning approaches and image processing techniques used in health sciences. Topics include supervised and unsupervised learning, feature extraction, model training and validation, performance metrics; preprocessing, segmentation, classification, and basic deep learning concepts applied to medical imaging data (radiology, pathology, dermatology, etc.). Applications use health-specific datasets with an emphasis on clinical interpretation of results.

Course Precondition

No prerequisites. (Basic knowledge of statistics and computer usage is recommended.)

Resources

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in R.

Notes

Recent machine learning and medical imaging research articles


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explain machine learning and image processing concepts used in health sciences.
LO02 Distinguish between supervised and unsupervised learning approaches.
LO03 Apply basic preprocessing and feature extraction steps to medical images.
LO04 Perform classification/segmentation applications using simple machine learning models.
LO05 Evaluate model performance using appropriate metrics.
LO06 Interpret machine learning results within a clinical context.
LO07 Observe ethical, privacy, and data security principles when working with health data.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Explain basic biostatistics, probability, and demographic concepts used in health sciences.
PLO02 Bilgi - Kuramsal, Olgusal Define research designs, sampling methods, and data types used in health research.
PLO03 Bilgi - Kuramsal, Olgusal Explain the foundations of statistical approaches used in healthcare decision-making processes. 2
PLO04 Bilgi - Kuramsal, Olgusal Explain the basic logic of regression, modeling, and advanced statistical methods used in health sciences.
PLO05 Beceriler - Bilişsel, Uygulamalı Analyze and interpret data obtained from health research using appropriate statistical methods. 3
PLO06 Beceriler - Bilişsel, Uygulamalı Perform statistical analyses and generate outputs using statistical software packages. 2
PLO07 Beceriler - Bilişsel, Uygulamalı Apply basic data science, artificial intelligence, and machine learning applications in health sciences. 5
PLO08 Beceriler - Bilişsel, Uygulamalı Evaluate multiple regression and survival analysis results in a clinical context.
PLO09 Beceriler - Bilişsel, Uygulamalı Analyze genetic and biomedical data using basic analytical approaches.
PLO10 Beceriler - Bilişsel, Uygulamalı Apply scale development, validity, and reliability analyses.
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Conduct data analysis and reporting within the scope of a term project.
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Apply and manage sampling procedures in health studies.
PLO13 Yetkinlikler - Öğrenme Yetkinliği Critically evaluate scientific studies from a statistical perspective. 1
PLO14 Yetkinlikler - İletişim ve Sosyal Yetkinlik Present analysis results in accordance with ethical principles. 2
PLO15 Yetkinlikler - Alana Özgü Yetkinlik Applies fundamental concepts of epidemiology and health statistics to clinical and field settings. 3


Week Plan

Week Topic Preparation Methods
1 Course introduction; introduction to machine learning in healthcare Reading Öğretim Yöntemleri:
Anlatım
2 Types of machine learning and basic concepts Reading Öğretim Yöntemleri:
Anlatım
3 Data preparation and feature extraction Reading Öğretim Yöntemleri:
Anlatım
4 Supervised learning: classification Reading Öğretim Yöntemleri:
Anlatım
5 Unsupervised learning: clustering Reading Öğretim Yöntemleri:
Anlatım
6 Model training and validation Reading Öğretim Yöntemleri:
Anlatım
7 Performance metrics Reading Öğretim Yöntemleri:
Anlatım
8 Mid-Term Exam Ölçme Yöntemleri:
Sözlü Sınav
9 Introduction to medical imaging data Reading Öğretim Yöntemleri:
Anlatım
10 Image preprocessing techniques Reading Öğretim Yöntemleri:
Anlatım, Tartışma
11 Image segmentation Reading Öğretim Yöntemleri:
Anlatım
12 Basic deep learning approaches Reading Öğretim Yöntemleri:
Anlatım
13 Applied examples in health sciences I Reading Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
14 Applied examples in health sciences II Reading Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
15 General review and evaluation of applications Reading Öğretim Yöntemleri:
Soru-Cevap, Tartışma
16 Term Exams Ölçme Yöntemleri:
Proje / Tasarım, Ödev
17 Term Exams Ölçme Yöntemleri:
Ödev, Proje / Tasarım


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 4 56
Out of Class Study (Preliminary Work, Practice) 14 4 56
Assesment Related Works
Homeworks, Projects, Others 1 15 15
Mid-term Exams (Written, Oral, etc.) 1 15 15
Final Exam 1 15 15
Total Workload (Hour) 157
Total Workload / 25 (h) 6,28
ECTS 6 ECTS

Update Time: 12.01.2026 05:00