MT332 Real Analysis

5 ECTS - 3-0 Duration (T+A)- 6. Semester- 3 National Credit

Information

Code MT332
Name Real Analysis
Term 2023-2024 Academic Year
Semester 6. Semester
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 5 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Prof. Dr. GONCA AYIK
Course Instructor Prof. Dr. GONCA AYIK (A Group) (Ins. in Charge)


Course Goal / Objective

The aim of this course is to make students comprehend Riemann integrability criteria, integrable functions, fundamental theorem of calculus, Darbox theorem, inverse and implicit function theorem.

Course Content

In this course Riemann integral, properties of Riemann integral, fundamental theorem of calculus, integral as a limit, improper integral, uniform convergence, intercahange of limits, inverse and implicit function theorem are described.

Course Precondition

NONE

Resources

Introduction To Real Analysis - Robert G Bartle & Donald R Sherbert

Notes

Principle of Mathematical Analysis,Walter Rudin,McGraw-Hill, 1976. Analiz I,II, Erdal Coşkun, Alp Yayınevi, 2002. Introduction To Real Analysis , Robert G. Bartle, Donald R. Bartle,Wiley, 1992.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Realises Riemann integrability criteria.
LO02 Recognizes integrable functions.
LO03 Realises fundamental theorem of calculus.
LO04 Realises integral as a limit and improper integral.
LO05 Realises uniform convergence and intercahange of limits.
LO06 Realises the Taylor formula.
LO07 Realises the Darbox theorem.
LO08 Realises inverse and implicit function theorems.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Comprehend the ability to prove the mathematical knowledge gained in secondary education on the basis of theoretical basis. 5
PLO02 Bilgi - Kuramsal, Olgusal Understands importance of basic consepts of Algebra, Analaysis and Topology. 5
PLO03 Yetkinlikler - Öğrenme Yetkinliği Mathematical reasoning demonstrates the ability to develop and write mathematical proofs by gaining maturity. 4
PLO04 Bilgi - Kuramsal, Olgusal Demonstrate the ability to express the basic theories of mathematics both correctly. 5
PLO05 Bilgi - Kuramsal, Olgusal Understands the relationship between the different fields of mathematics and its relation to other disciplines. 4
PLO06 Bilgi - Kuramsal, Olgusal Comprehends the ability to understand the relationships between the objects in the most understandable way while creating a model for any problem. 5
PLO07 Bilgi - Kuramsal, Olgusal Comprehend and explain mathematical models such as formulas, graphs, tables and schema. 4
PLO08 Bilgi - Kuramsal, Olgusal Demonstrate the ability to mathematically rearrange, analyze, and model the problems they encounter. 4
PLO09 Bilgi - Kuramsal, Olgusal Comprehends at least one of the computer programming languages.
PLO10 Bilgi - Kuramsal, Olgusal Demonstrate the ability to use scientific methods and appropriate technologies effectively in problem solving. 3
PLO11 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Understands sufficient knowledge of foreign language to be able to understand Mathematical concepts and communicate with other mathematicians
PLO12 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği In addition to their professional development, they demonstrate their ability to continuously improve themselves by identifying their educational needs in scientific, cultural, artistic and social areas in line with their interests and abilities. 5
PLO13 Yetkinlikler - Öğrenme Yetkinliği Understands the programming techniques and shows the ability to do programming.
PLO14 Yetkinlikler - Öğrenme Yetkinliği Demonstrates the ability to study mathematics both independently and as a group. 5
PLO15 Bilgi - Kuramsal, Olgusal Demonstrate an awareness of the universal and social impacts and legal consequences of mathematical applications in the field of study. 3
PLO16 Bilgi - Kuramsal, Olgusal Demonstrate the ability to select, use and develop effectively for contemporary mathematical applications. 4
PLO17 Bilgi - Kuramsal, Olgusal It has ability of lifelong learning awareness, access to information, monitoring developments in science and technology and self-renewal ability. 4
PLO18 Bilgi - Kuramsal, Olgusal Gains the ability to use information technologies effectively for contemporary mathematical applications. 3
PLO19 Bilgi - Kuramsal, Olgusal Gains the ability to design, conduct experiments, field work, data collection, analysis, archiving, text solving and / or interpretation according to mathematics fields. 4
PLO20 Bilgi - Kuramsal, Olgusal Gains the consciousness of prefesional ethics and responsibility. 5


Week Plan

Week Topic Preparation Methods
1 Reimann Integral Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
2 Reimann integrability Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
3 Integrable functions Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
4 Solving problem Review of the relevant pages from sources Öğretim Yöntemleri:
Problem Çözme
5 Properties of Riemann integral Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
6 Integrability of continuous and monotone functions Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
7 Fundamental theorem of calculus Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
8 Mid-Term Exam Review and problem solving Ölçme Yöntemleri:
Yazılı Sınav
9 Taylor formula Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
10 Darboux theorem Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
11 Improper Integral Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
12 Functions of several variables Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
13 Inverse function theorem Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
14 Implicit function theorem Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
15 Implicit function theorem 1 Review of the relevant pages from sources Öğretim Yöntemleri:
Anlatım, Tartışma
16 Term Exams Review and problem solving Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Review and problem solving Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 3 42
Out of Class Study (Preliminary Work, Practice) 14 3 42
Assesment Related Works
Homeworks, Projects, Others 0 0 0
Mid-term Exams (Written, Oral, etc.) 1 12 12
Final Exam 1 18 18
Total Workload (Hour) 114
Total Workload / 25 (h) 4,56
ECTS 5 ECTS

Update Time: 03.05.2023 10:26