SD0675 Introduction to Machine Learning

3 ECTS - 2-0 Duration (T+A)- 0. Semester- 2 National Credit

Information

Code SD0675
Name Introduction to Machine Learning
Term 2024-2025 Academic Year
Duration (T+A) 2-0 (T-A) (17 Week)
ECTS 3 ECTS
National Credit 2 National Credit
Teaching Language Türkçe
Level Üniversite Dersi
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Öğr. Gör.Dr. YILMAZ KOÇAK


Course Goal / Objective

To provide basic knowledge about statistics and machine learning concepts and methods, to understand the general structure of machine learning algorithms, and to gain the ability to code machine learning algorithms with a chosen programming language (Python etc.).

Course Content

Basic statistics, definition and general structure of algorithm of machine learning, coding of machine learning algorithms with the selected programming language, regression and classification algorithms, Support Vector Machines.

Course Precondition

Resources

Uğuz S., Makine Öğrenmesi Teorik Yönleri ve Pyhton Uygulaması, Nobel Yayınları 2. Basım, 2021

Notes

Smola, A. and Vishwanathan, S.V.N. Introduction to Machine Learning, Yahoo Labs, Santa Clara


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Explains basic concept of statistics.
LO02 Explains the concept and algorithms of Machine Learning
LO03 Codes the Data Preprocessing Process
LO04 Explains regression concepts and defines performance metrics for regression,
LO05 Writes programs to solve simple and multiple linear regression problems.
LO06 Explains the K-Nearest Neighbor (KNN) algorithm
LO07 Defines classification and performance metrics for classification.
LO08 Explains the concepts of Support Vector Machines


Week Plan

Week Topic Preparation Methods
1 The importance of using Python in statistics and machine learning Examining Python Programming Language from source books and search engines Öğretim Yöntemleri:
Anlatım, Soru-Cevap
2 Examining Python Libraries from source books and search engines. Examining Python Libraries from source books and search engines. Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
3 Examining Data Visualization with Python. Examining Data Visualization with Python. Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
4 Vectors and Matrices Researching of Vectors and Matrices. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
5 Basic Concepts in Machine Learning Reading the subject from reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap
6 Application Development Processes in Machine Learning Reading the subject from reference books Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
7 Data Preprocessing Exploring the concept of Data Preprocessing Öğretim Yöntemleri:
Anlatım, Soru-Cevap
8 Mid-Term Exam Exam preparation Ölçme Yöntemleri:
Yazılı Sınav
9 Simple Linear Regression Researching the concept of regression Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
10 Multiple Linear Regression Researching of regression types Öğretim Yöntemleri:
Anlatım, Soru-Cevap
11 Performance Benchmarks for Regression Researching performance evaluation Öğretim Yöntemleri:
Anlatım, Soru-Cevap
12 Bayes Theorem and Classification Researching the concept of classification Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
13 Investigation of classification criteria Investigation of classification criteria Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
14 K-Nearest Neighbor Algorithm Investigating the concept of neighborhood Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Alıştırma ve Uygulama
15 Support Vector Machines Researching the subject. Öğretim Yöntemleri:
Anlatım, Soru-Cevap
16 Term Exams Exam preparation Ölçme Yöntemleri:
Yazılı Sınav
17 Term Exams Exam preparation Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 14 2 28
Out of Class Study (Preliminary Work, Practice) 14 2 28
Assesment Related Works
Homeworks, Projects, Others 1 10 10
Mid-term Exams (Written, Oral, etc.) 1 6 6
Final Exam 1 10 10
Total Workload (Hour) 82
Total Workload / 25 (h) 3,28
ECTS 3 ECTS

Update Time: 03.09.2024 04:56