FBE716

6 ECTS - 3-0 Duration (T+A)- . Semester- 3 National Credit

Information

Unit INSTITUTE OF SOCIAL SCIENCES
SCIENCE TEACHING (MASTER) (WITH THESIS)
Code FBE716
Name
Term 2025-2026 Academic Year
Term Fall and Spring
Duration (T+A) 3-0 (T-A) (17 Week)
ECTS 6 ECTS
National Credit 3 National Credit
Teaching Language Türkçe
Level Yüksek Lisans Dersi
Type Normal
Mode of study Yüz Yüze Öğretim
Catalog Information Coordinator Doç. Dr. PINAR FETTAHLIOĞLU
Course Instructor
The current term course schedule has not been prepared yet.


Course Goal / Objective

The aim of this course is to enable students to analyze and interpret more complex datasets using advanced statistical methods in educational research. Topics include structural equation modeling, multivariate analyses, types of regression, and statistical modeling. Software tools such as SPSS, AMOS, and/or R will be used throughout the course.

Course Content

This course addresses advanced quantitative data analysis techniques used in educational research. Students will engage in hands-on applications of multiple regression, logistic regression, factor analysis, construct validity, and structural equation modeling. Throughout the course, students will learn to develop statistical models aligned with research questions, test these models, and report findings according to scientific standards. Software such as SPSS, AMOS, and R will be used with sample datasets. Advanced topics such as model fit indices, mediation and moderation analysis will also be covered.

Course Precondition

Successful completion of Applied Educational Statistics I

Resources

Tabachnick, B. G., & Fidell, L. S. (2019). Using Multivariate Statistics (7th ed.). Pearson.

Notes

Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling (4th ed.). Guilford Press.


Course Learning Outcomes

Order Course Learning Outcomes
LO01 Identifies and explains advanced statistical analysis techniques.
LO02 Develops statistical models appropriate to research questions.
LO03 Applies analyses such as factor analysis, multiple regression, and SEM.
LO04 Interprets and reports analysis results in scientific language.
LO05 Uses statistical software tools effectively.


Relation with Program Learning Outcome

Order Type Program Learning Outcomes Level
PLO01 Bilgi - Kuramsal, Olgusal Define and apply scientific research and analysis methods used in science 5
PLO02 Bilgi - Kuramsal, Olgusal Has basic knowledge and skills related to Science Education. 4
PLO03 Bilgi - Kuramsal, Olgusal Explains the development and learning theories within the scope of science education.
PLO04 Bilgi - Kuramsal, Olgusal Describes instructional strategies, methods and techniques on the level of expertise on the basis of undergraduate qualifications.
PLO05 Bilgi - Kuramsal, Olgusal Explains the interaction between disciplines related to the field.
PLO06 Bilgi - Kuramsal, Olgusal Explains the knowledge in the subject areas of science education at the level of expertise.
PLO07 Bilgi - Kuramsal, Olgusal Relate knowledge of science education with information in different fields. 3
PLO08 Bilgi - Kuramsal, Olgusal Apply the theoretical and practical knowledge in the field of expertise
PLO09 Bilgi - Kuramsal, Olgusal Criticize the practices related to science education at national and international level. 3
PLO10 Bilgi - Kuramsal, Olgusal Plans and conducts a scientific research.
PLO11 Bilgi - Kuramsal, Olgusal Apply teaching methods and techniques on the basis of undergraduate qualifications. 3
PLO12 Bilgi - Kuramsal, Olgusal Manages a study that requires expertise in the field independently.
PLO13 Bilgi - Kuramsal, Olgusal Makes teamwork or leadership in situations that require resolution of problems related to the field.
PLO14 Beceriler - Bilişsel, Uygulamalı Questions scientific and social issues with new perspectives.
PLO15 Beceriler - Bilişsel, Uygulamalı Carries out studies in the field of lifelong learning.
PLO16 Beceriler - Bilişsel, Uygulamalı Follow technological developments.
PLO17 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Provides a scientific study in the field of science education, supported by qualitative and quantitative data, in writing, orally and visually, to experts or non-specialists.
PLO18 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Uses information and communication technologies effectively
PLO19 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Use the languages of the European language portfolio to understand the information in the field and to communicate verbally and in writing
PLO20 Yetkinlikler - Öğrenme Yetkinliği Acts in accordance with social, scientific, cultural and ethical values when conducting a scientific research or project or interpreting a study.


Week Plan

Week Topic Preparation Methods
1 Introduction to the course and overview of advanced statistical analyses reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
2 Multiple linear regression: assumptions, model building, interpretation reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
3 Multiple regression applications (using SPSS and/or R) reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
4 Logistic regression: modeling with binary outcome variables reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
5 Logistic regression applications (using SPSS and/or R) reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
6 Exploratory Factor Analysis (EFA): KMO, Bartlett test, factor loadings reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma
7 Confirmatory Factor Analysis (CFA): model setup and fit indices reading related sections Öğretim Yöntemleri:
Anlatım, Tartışma, Soru-Cevap
8 Mid-Term Exam reading related sections Ölçme Yöntemleri:
Yazılı Sınav
9 CFA practice with AMOS reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
10 Introduction to Structural Equation Modeling (SEM) reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
11 SEM application: Model building, testing, and interpretation ilgili bolumleri okuma Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
12 Mediation and moderation analysis reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
13 Model improvement, modification indices, and reporting reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
14 Project work with applied dataset reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
15 Student project presentations and general evaluation reading related sections Öğretim Yöntemleri:
Anlatım, Soru-Cevap, Tartışma, Alıştırma ve Uygulama
16 Term Exams reading related sections Ölçme Yöntemleri:
Ödev
17 Term Exams reading related sections Ölçme Yöntemleri:
Yazılı Sınav


Student Workload - ECTS

Works Number Time (Hour) Workload (Hour)
Course Related Works
Class Time (Exam weeks are excluded) 15 3 45
Out of Class Study (Preliminary Work, Practice) 15 3 45
Assesment Related Works
Homeworks, Projects, Others 15 3 45
Mid-term Exams (Written, Oral, etc.) 1 4 4
Final Exam 2 4 8
Total Workload (Hour) 147
Total Workload / 25 (h) 5,88
ECTS 6 ECTS

Update Time: 16.05.2025 08:04