Genel Bilgi
Kod | MT236 |
Ad | Vektör Analiz |
Dönem | 2022-2023 Eğitim-Öğretim Yılı |
Yarıyıl | 4. Yarıyıl |
Süre (T+U) | 2-0 (T-U) (17 Hafta) |
AKTS | 4 AKTS |
Yerel Kredi | 2 Yerel Kredi |
Eğitim Dil | Türkçe |
Seviye | Lisans Dersi |
Tür | Normal |
Öğretim Şekli | Yüz Yüze Öğretim |
Bilgi Paketi Koordinatörü | Doç. Dr. NAZAR ŞAHİN ÖĞÜŞLÜ |
Dersin Öğretim Elemanı |
Doç. Dr. NAZAR ŞAHİN ÖĞÜŞLÜ
(A Grubu)
(Sor. Öğr. Ele.)
|
Dersin Amacı / Hedefi
Vektörel analizin soyut ve somut yönleri ile ilgili bilgi ve becerileri kazandırmak, vektör fonksiyonları, eğrisel integraller, Green teoremi ve Diverjans teoremi ile ilgili temel kavramları ve bu kavramların bir takım fiziksel uygulamalarını kavratmak, soyut matematiksel kavramları anlamayı ve soyut düşünceyi öğretmek.
Dersin İçeriği
Vektör fonksiyonları, eğrisel integral, Green teoremi, yüzey integralleri, diverjans teoremi
Dersin Ön Koşulu
Yok
Kaynaklar
Calculus and Analytic Geometry, Yazarlar:Shermann K. Stein, Anthony Barcellos.
Notlar
Calculus and Analytic Geometry, Yazarlar:Shermann K. Stein, Anthony Barcellos.
Dersin Öğrenme Çıktıları
Sıra | Dersin Öğrenme Çıktıları |
---|---|
ÖÇ01 | Vektör fonksiyonları ile ilgili temel kavramları kullanarak bunlarla ilgili özellikleri ispat eder. |
ÖÇ02 | Vektör fonksiyonlarının temel özelliklerini bazı fizik problemlerinin çözümünde kullanır. |
ÖÇ03 | Eğrisel integralleri hesaplar. |
ÖÇ04 | Green teoremi ile ilgili temel özellikleri ispat eder. |
ÖÇ05 | Yüzey integrallerini hesaplar. |
ÖÇ06 | Diverjans teoremi ile ilgili temel özellikleri ispat eder. |
ÖÇ07 | Diverjans teoremin uygulamalarını yapar. |
ÖÇ08 | Green teoremin uygulamalarını yapar. |
Program Öğrenme Çıktıları ile İlişkisi
Sıra | Tür | Program Öğrenme Çıktıları | Duzey |
---|---|---|---|
PÖÇ01 | Bilgi - Kuramsal, Olgusal | Orta Öğretimde kazandırılan matematik bilgilerini teorik temellere dayandırarak ispat edebilmeyi kavrar. | 5 |
PÖÇ02 | Bilgi - Kuramsal, Olgusal | Cebir, Analiz ve Topolojinin temel kavramlarının önemini kavrar. | 5 |
PÖÇ03 | Yetkinlikler - Öğrenme Yetkinliği | Matematiksel akıl yürütme olgunluğu kazanarak matematiksel ispatlar geliştirip ve yazama yeteneğini gösterir. | 5 |
PÖÇ04 | Bilgi - Kuramsal, Olgusal | Matematiğin temel teorilerini doğru olarak hem yazılı hem de sözlü olarak ifade edebilme yeteneğini gösterir. | 5 |
PÖÇ05 | Bilgi - Kuramsal, Olgusal | Matematiğin farklı alanları arasındaki ilişkinin ve diğer disiplinlerle olan bağlantısının kavrar. | 4 |
PÖÇ06 | Bilgi - Kuramsal, Olgusal | Herhangi bir problem için model oluştururken nesneler arasındaki ilişkileri en anlaşılır bir şekilde edebilmeyi kavrar. | 4 |
PÖÇ07 | Bilgi - Kuramsal, Olgusal | Formül, grafik, tablo ve şema gibi matematiksel modelleri çizemeyi ve açıklamayı kavrar. | 3 |
PÖÇ08 | Bilgi - Kuramsal, Olgusal | Karşılaştığı problemleri matematiksel olarak yeniden düzenleme, analiz etme ve modelleme yeteneğini gösterir. | 3 |
PÖÇ09 | Bilgi - Kuramsal, Olgusal | Bilgisayar programlama dillerinden en az birini kavrar. | |
PÖÇ10 | Bilgi - Kuramsal, Olgusal | Problem çözmede bilimsel yöntemleri ve uygun teknolojileri etkin olarak kullanma becerisini gösterir. | 3 |
PÖÇ11 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Matematiksel kavramları anlayabilecek, meslektaşları ile iletişim kurabilecek yabancı dili kavrar. | |
PÖÇ12 | Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği | Mesleki gelişimlerinin yanı sıra ilgi ve yetenekleri doğrultusunda bilimsel, kültürel, sanatsal ve sosyal alanlarda eğitim gereksinimlerini belirleyerek kendini sürekli geliştirme yeteneğini gösterir. | 4 |
PÖÇ13 | Yetkinlikler - Öğrenme Yetkinliği | Programlama tekniklerini kavrar ve program yapabilme yetenegini gösterir. | |
PÖÇ14 | Yetkinlikler - Öğrenme Yetkinliği | Gerek bağımsız gerekse grup olarak matematik çalışma yeteneğini gösterir. | 4 |
PÖÇ15 | Bilgi - Kuramsal, Olgusal | Matematik uygulamalarının çalışma alanlarında evrensel ve toplumsal boyutlardaki etkileri ve hukuksal sonuçları konusunda farkındalık becerisini gösterir. | 3 |
PÖÇ16 | Bilgi - Kuramsal, Olgusal | Matematik uygulamaları için gerekli olan çağdaş araçları seçme, kullanma ve geliştirme becerisi gösterir. | 3 |
PÖÇ17 | Bilgi - Kuramsal, Olgusal | Yaşam boyu öğrenme bilinci, bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi gösterir. | 4 |
PÖÇ18 | Bilgi - Kuramsal, Olgusal | Matematik uygulamaları için gerekli olan bilişim teknolojilerini etkin bir şekilde kullanma becerisi kazanır. | 4 |
PÖÇ19 | Bilgi - Kuramsal, Olgusal | Matematik çalışma alanlarına göre tasarlama, deney yapma, alan çalışması, veri toplama, sonuçları analiz etme, arşivleme, metin çözme ve/veya yorumlama becerisi kazanır. | 4 |
PÖÇ20 | Bilgi - Kuramsal, Olgusal | Meslekî etik ve sorumluluk bilinci kazanır. | 5 |
Haftalık Akış
Hafta | Konu | Ön Hazırlık | Yöntemler |
---|---|---|---|
1 | Vektör fonksiyonlarının limit ve türevi | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
2 | Vektör fonksiyonlarının türev özellikleri | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
3 | Bir eğri boyunca hareket: hız, ivme vektörü ve düzgün dairesel hareket. | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
4 | İvme vektörünün teğet ve normal bileşenleri. | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
5 | Newton ve Kepler yasaları | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
6 | Vektörel ve Skaler alanlar ve bir alandan başka bir alan elde etme yöntemleri | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
7 | Eğrisel integraller | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
8 | Ara Sınav | Anlatılan konuların ders notları ve kaynaklardan tekrar edilmesi | Ölçme Yöntemleri: Yazılı Sınav |
9 | Eğrisel integralin bazı fiziksel uygulamaları(eğri boyunca yapılan iş, Toplam akı vb) | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
10 | Green teoreminin ispatı | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
11 | İki eğri ile sınırlı bölgeler için Green teoremi | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
12 | Korunumlu vektörel alanları ve eğrisel integralin temel teoremi | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
13 | Yüzey integralinin hesaplanması | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
14 | Diverjans teoreminin ispatı | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
15 | Diverjans teoreminin bazı uygulamaları | Kaynaklardaki ilgili sayfaların gözden geçirilmesi | Öğretim Yöntemleri: Anlatım, Tartışma |
16 | Yarıyıl Sonu Sınavları | Anlatılan konuların ders notları ve kaynaklardan tekrar edilmesi | Ölçme Yöntemleri: Yazılı Sınav |
17 | Yarıyıl Sonu Sınavları | Anlatılan konuların ders notları ve kaynaklardan tekrar edilmesi | Ölçme Yöntemleri: Yazılı Sınav |
Öğrenci İş Yükü - AKTS
Çalışmalar | Sayısı | Süresi (Saat) | İş Yükü (Saat) |
---|---|---|---|
Ders ile İlgili Çalışmalar | |||
Ders (Sınav haftaları dahil değildir) | 14 | 2 | 28 |
Sınıf Dışı Ders Çalışma (Ön çalışma, pekiştirme) | 14 | 2 | 28 |
Değerlendirmeler ile İlgili Çalışmalar | |||
Ödev, Proje, Diğer | 1 | 0 | 0 |
Ara Sınavlar (Yazılı, Sözlü, vs.) | 1 | 8 | 8 |
Yarıyıl/Yıl Sonu/Final Sınavı | 1 | 24 | 24 |
Toplam İş Yükü (Saat) | 88 | ||
Toplam İş Yükü / 25 (s) | 3,52 | ||
AKTS | 4 AKTS |