IEM1846 Uygulamalı Zaman Serisi Modelleri II

8 AKTS - 4-0 Süre (T+U)- . Yarıyıl- 4 Yerel Kredi

Genel Bilgi

Kod IEM1846
Ad Uygulamalı Zaman Serisi Modelleri II
Dönem 2022-2023 Eğitim-Öğretim Yılı
Dönem Bahar
Süre (T+U) 4-0 (T-U) (17 Hafta)
AKTS 8 AKTS
Yerel Kredi 4 Yerel Kredi
Eğitim Dil Türkçe
Seviye Doktora Dersi
Tür Normal
Öğretim Şekli Yüz Yüze Öğretim
Bilgi Paketi Koordinatörü Dr. Öğr. Üyesi FELA ÖZBEY
Dersin Öğretim Elemanı
Güncel dönem ders programı henüz yapılmamıştır.


Dersin Amacı / Hedefi

Bu dersin amacı regresyon analizinde uzamsal otokorelasyonları modelleme yöntemlerini tanıtmak ve öğrencilerin R programını kullanarak bu yöntemlerin uygulama yetisini kazandırmaktır.

Dersin İçeriği

Bu dersin içeriğini Klasik Doğrusal Regresyon Modeli, Önemli Mekansal Kavramlar, Mekansal Doğrusal Regresyon Modelleri, R Uygulamaları konuları oluşturmaktadır.

Dersin Ön Koşulu

Yok

Kaynaklar

Robert H. Shumway, David S. Stoffer (2011),Time Series Analysis and its Applications with R Examples, Third Edition, Springer-Verlag, New York, ISBN 978-1-4419-7864-6

Notlar

James Douglas Hamilton, (1994) Time Series Analysis, Princeton University Press, ISBN: 9780691042893


Dersin Öğrenme Çıktıları

Sıra Dersin Öğrenme Çıktıları
ÖÇ01 Zaman serisi verilerindeki ilişkileri belirler.
ÖÇ02 Zaman serisi verisini en iyi tanımlayan modeli seçer.
ÖÇ03 Zaman serisi modellerini tahmin eder.
ÖÇ04 Öğretilen tüm tekniklerin kodlarını yazar.
ÖÇ05 R programını etkin olarak kullanır.


Program Öğrenme Çıktıları ile İlişkisi

Sıra Tür Program Öğrenme Çıktıları Duzey
PÖÇ01 Bilgi - Kuramsal, Olgusal Ekonometrik bir problemi tespit edip bu probleme yeni bir çözüm önerir 2
PÖÇ02 Bilgi - Kuramsal, Olgusal Ekonometri, İstatistik ve Yöneylem Araştırması alanında güncel kavramları kullanarak yeni bilgiler geliştirir 2
PÖÇ03 Bilgi - Kuramsal, Olgusal Ekonometrik yöntemlerin diğer alan ve disiplinlere hangi amaçla ve nasıl uygulandığını açıklar 3
PÖÇ04 Beceriler - Bilişsel, Uygulamalı Sahip olduğu bilgileri kullanarak İktisat, İşletme ve diğer sosyal bilimlerde yer alan problemlere özgün çözümler getirir 3
PÖÇ05 Beceriler - Bilişsel, Uygulamalı Karşılaşılan problemi çözmek üzere matematik, istatistik ve ekonometri bilgisi kullanarak yeni bir model oluşturur
PÖÇ06 Beceriler - Bilişsel, Uygulamalı Modeli tahmin etmek için en uygun yöntemden elde ettiği sonuçları yorumlar 5
PÖÇ07 Beceriler - Bilişsel, Uygulamalı Problemlere çözüm önerileri geliştirmek üzere kavramsal düzeyde analiz yapar 2
PÖÇ08 Beceriler - Bilişsel, Uygulamalı Amaca uygun bir şekilde veri toplar 5
PÖÇ09 Beceriler - Bilişsel, Uygulamalı Araştırmadığı bir alanda akademik kurallar çerçevesinde farklı kaynaklardan yararlanarak elde ettiği bilgileri sentezler 3
PÖÇ10 Beceriler - Bilişsel, Uygulamalı Analiz sonuçlarını uygun bir şekilde sunar 2
PÖÇ11 Beceriler - Bilişsel, Uygulamalı Bulgularını Türkçe veya yabancı bir dilde yüksek lisans tezine ya da mesleki bir rapora dönüştürür
PÖÇ12 Beceriler - Bilişsel, Uygulamalı Karşılaştığı problemleri çözmek üzere güncel yaklaşım ve yöntemleri araştırıp yeni çözümler önerir 2
PÖÇ13 Beceriler - Bilişsel, Uygulamalı Ekonometrik ve istatistiki yöntemleri kullanarak uzun vadeli plan ve stratejiler geliştirir
PÖÇ14 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Bir problemi çözmek üzere Ekonometri, İstatistik ve Yöneylem ile ilgili bilgileri kullanarak bireysel çalışma yapar 4
PÖÇ15 Yetkinlikler - Bağımsız Çalışabilme ve Sorumluluk Alabilme Yetkinliği Ekip içinde sorumluluk alarak liderlik yapar
PÖÇ16 Yetkinlikler - Öğrenme Yetkinliği Yaşam boyu öğrenmenin gerekliliğinin bilincinde olarak alanıyla ilgili güncel gelişmeleri izleyerek kendini sürekli yeniler 2
PÖÇ17 Yetkinlikler - İletişim ve Sosyal Yetkinlik Bir örgüt/kurum için vizyon, amaç ve hedef belirlemek amacıyla alanında öğrendiği bilgileri kullanır
PÖÇ18 Yetkinlikler - İletişim ve Sosyal Yetkinlik Ekonometri, İstatistik ve Yöneylem ile ilgili bir paket program kullanır veya yeni bir bilgisayar kodu yazar 5
PÖÇ19 Yetkinlikler - İletişim ve Sosyal Yetkinlik İlgili kişilerin duygu, düşünce ve davranışlarını doğru bir şekilde yorumlar/kendisini yazılı ve sözlü olarak doğru bir şekilde ifade eder
PÖÇ20 Yetkinlikler - Alana Özgü Yetkinlik Toplumsal, bilimsel ve mesleki etik değerleri uygular
PÖÇ21 Yetkinlikler - Alana Özgü Yetkinlik Güncel konuları takip ederek iktisadi ve sosyal olaylara ilişkin verileri yorumlar 3


Haftalık Akış

Hafta Konu Ön Hazırlık Yöntemler
1 ÖNGÖRÜ: Minimum hata kareleri ortalaması öngörüsü; deterministik trend öngörüsü; ARIMA öngörüsü; kestirim limitleri; öngörü yorumları; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
2 ÖNGÖRÜ: ARIMA öngörüsünü güncelleme; Öngörü ağırlıkları ve üssel ağırlıklandırılmış hareketli ortalamalar; dönüştürülmüş serilerle öngörü; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
3 ÖNGÖRÜ: Koşullu beklenen değerler; minimum hata kareleri ortalaması kestirimi; sınırlı lineer süreç; durum uzay modelleri; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
4 MEVSİMSEL MODELLER: Mevsimsel ARIMA modelleri; çarpımsal mevsimsel ARMA modelleri; durağan olmayan mevsimsel ARIMA modelleri; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
5 MEVSİMSEL MODELLER: Model spesifikasyonu, modelin uydurulması ve kontrol; Mevsimsel modellerle öngörü; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
6 ZAMAN SERİSİ İLE REGRESYON MODELLERİ: yapısal kırılma analizleri; sapan değerler; sahte korelasyonlar; filtreleme ve stokastik regresyon; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
7 KOŞULLU VARYANS MODELLERİ: finansal serilerin bazı ortak özellikleri; GARCH modelleri; maksimum olabilirlik tahminleri;model sınaması;koşullu varyansın negatif olmamasını sağlayan koşullar; GARCH modellerine bazı genişletmeler; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
8 Ara Sınav
9 SPEKTRAL ANALİZE GİRİŞ: giriş; periodogram; spektral gösterim ve spektral dağılım; spektral yoğunluk; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
10 SPEKTRAL ANALİZE GİRİŞ: ARMA süreçlerinin spektral yoğunluğu; örneklem spektral dağılımının örneklem özellikleri; sinüs ve kosinüs dizilerinin ortogonaliği; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
11 SPEKTRUMUN TAHMİNİ: spektral yoğunluğu düzleştirme; yanlılık ve varyans; band genişliği; spektrum için güven aralığı; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
12 SPEKTRUMUN TAHMİNİ: sızıntılar ve incelmeler; otoregresif spektrum tahmini; simüle edilmiş verilerle örnekler; gerçek verilerle örnekler; spektral tahminlerde diğer yöntemler; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
13 EŞİKLİ MODELLER: doğrusal olmamanın grafik üzerinde araştırılması; doğrusal olmama testleri; polinom modeller; 1.sıra eşikli otoregresif modeller; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
14 EŞİKLİ MODELLER: eşikli modeller; eşikli doğrusal olmama için testler; TAR modelinin tahmini; R uygulamaları. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
15 Veri seti üzerinde genel uygulama. Öğrenciler, konu başlıklarına göre kaynak kitapların ilgili bölümlerini okuyarak derse ön hazırlık yapacaklardır
16 Yarıyıl Sonu Sınavları
17 Yarıyıl Sonu Sınavları


Öğrenci İş Yükü - AKTS

Çalışmalar Sayısı Süresi (Saat) İş Yükü (Saat)
Ders ile İlgili Çalışmalar
Ders (Sınav haftaları dahil değildir) 14 4 56
Sınıf Dışı Ders Çalışma (Ön çalışma, pekiştirme) 14 8 112
Değerlendirmeler ile İlgili Çalışmalar
Ödev, Proje, Diğer 2 4 8
Ara Sınavlar (Yazılı, Sözlü, vs.) 1 12 12
Yarıyıl/Yıl Sonu/Final Sınavı 1 24 24
Toplam İş Yükü (Saat) 212
Toplam İş Yükü / 25 (s) 8,48
AKTS 8 AKTS

Güncelleme Zamanı: 18.11.2022 05:59