Genel Bilgi
Kod | CEN348 |
Ad | Artificial Intelligence Systems |
Dönem | 2024-2025 Eğitim-Öğretim Yılı |
Yarıyıl | 6. Yarıyıl |
Süre (T+U) | 3-0 (T-U) (17 Hafta) |
AKTS | 5 AKTS |
Yerel Kredi | 3 Yerel Kredi |
Eğitim Dil | İngilizce |
Seviye | Lisans Dersi |
Tür | Normal |
Etiket | Z Zorunlu |
Öğretim Şekli | Yüz Yüze Öğretim |
Bilgi Paketi Koordinatörü | Mehmet SARIGÜL |
Dersin Öğretim Elemanı |
Güncel dönem ders programı henüz yapılmamıştır. Bir önceki dönem grupları ve öğretim elemanları gösterilmektedir. |
Dersin Amacı / Hedefi
Bilgi gösterimi. Arama ve sezgisel programlama. Mantık ve mantık programlama. Yapay zekanın uygulama alanları: Problem çözme, oyunlar ve bulmacalar, uzman sistemler, planlama, öğrenme, görüntü tanıma, doğal dil anlama.
Dersin İçeriği
Bilgi gösterimi. Arama ve sezgisel programlama. Mantık ve mantık programlama. Yapay zekanın uygulama alanları: Problem çözme, oyunlar ve bulmacalar, uzman sistemler, planlama, öğrenme, görüntü tanıma, doğal dil anlama. Bir yapay zeka diliyle çalışmalar.
Dersin Ön Koşulu
Yok
Kaynaklar
1 Nabiyev V. V., 2005 Yapay Zeka: Problemler, Yöntemler, Algoritmalar, Ankara (2. Baskı) 2 Russell, Stuart J. ; Norvig, Peter, 2003 , Artificial Intelligence: A Modern Approach (2nd ed. )
Notlar
1 Nilsson, Nils,1998 , Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-55860-467-4
Dersin Öğrenme Çıktıları
Sıra | Dersin Öğrenme Çıktıları |
---|---|
ÖÇ01 | Yapay zekanın temel kavramlarını ve algoritmalarını öğrenir. |
ÖÇ02 | Belirsizliklere uygun olasılıksal çözümleri öğrenir. |
ÖÇ03 | Denetimli ve denetimsiz öğrenme arasındaki farkı öğrenir. Probleme uygun algoritma seçebilir. |
ÖÇ04 | Yapay sinir ağlarının çalışma prensibini öğrenir. |
Program Öğrenme Çıktıları ile İlişkisi
Sıra | Tür | Program Öğrenme Çıktıları | Duzey |
---|---|---|---|
PÖÇ01 | Bilgi - Kuramsal, Olgusal | Matematik, fen bilimleri ve ilgili mühendislik disiplinine özgü konularda yeterli bilgi birikimi; bu alanlardaki kuramsal ve uygulamalı bilgileri, karmaşık mühendislik problemlerinin çözümünde kullanabilme becerisi. | |
PÖÇ02 | Bilgi - Kuramsal, Olgusal | Karmaşık mühendislik problemlerini tanımlama, formüle etme ve çözme becerisi; bu amaçla uygun analiz ve modelleme yöntemlerini seçme ve uygulama becerisi. | 5 |
PÖÇ03 | Bilgi - Kuramsal, Olgusal | Karmaşık bir sistemi, süreci, cihazı veya ürünü gerçekçi kısıtlar ve koşullar altında, belirli gereksinimleri karşılayacak şekilde tasarlama becerisi; bu amaçla modern tasarım yöntemlerini uygulama becerisi. | |
PÖÇ04 | Bilgi - Kuramsal, Olgusal | Mühendislik uygulamalarında karşılaşılan karmaşık problemlerin analizi ve çözümü için gerekli olan modern teknik ve araçları seçme ve kullanma becerisi; bilişim teknolojilerini etkin bir şekilde kullanma becerisi. | |
PÖÇ05 | Bilgi - Kuramsal, Olgusal | Karmaşık mühendislik problemlerinin veya disipline özgü araştırma konularının incelenmesi için deney tasarlama, deney yapma, veri toplama, sonuçları analiz etme ve yorumlama becerisi. | 5 |
PÖÇ06 | Bilgi - Kuramsal, Olgusal | Disiplin içi ve çok disiplinli takımlarda etkin biçimde çalışabilme becerisi; bireysel çalışma becerisi. | |
PÖÇ07 | Bilgi - Kuramsal, Olgusal | Sözlü ve yazılı etkin iletişim kurma becerisi; en az bir yabancı dil bilgisi; etkin rapor yazma ve yazılı raporları anlama, tasarım ve üretim raporları hazırlayabilme, etkin sunum yapabilme, açık ve anlaşılır talimat verme ve alma becerisi. | |
PÖÇ08 | Bilgi - Kuramsal, Olgusal | Yaşam boyu öğrenmenin gerekliliği konusunda farkındalık; bilgiye erişebilme, bilim ve teknolojideki gelişmeleri izleme ve kendini sürekli yenileme becerisi. | |
PÖÇ09 | Bilgi - Kuramsal, Olgusal | Etik ilkelerine uygun davranma, mesleki ve etik sorumluluk ve mühendislik uygulamalarında kullanılan standartlar hakkında bilgi. | |
PÖÇ10 | Bilgi - Kuramsal, Olgusal | Proje yönetimi, risk yönetimi ve değişiklik yönetimi gibi, iş hayatındaki uygulamalar hakkında bilgi; girişimcilik, yenilikçilik hakkında farkındalık; sürdürülebilir kalkınma hakkında bilgi. | |
PÖÇ11 | Bilgi - Kuramsal, Olgusal | Mühendislik uygulamalarının evrensel ve toplumsal boyutlarda sağlık, çevre ve güvenlik üzerindeki etkileri ve çağın mühendislik alanına yansıyan sorunları hakkında bilgi; mühendislik çözümlerinin hukuksal sonuçları konusunda farkındalık. |
Haftalık Akış
Hafta | Konu | Ön Hazırlık | Yöntemler |
---|---|---|---|
1 | Arama Programları, Minimax | Ders notlarını okuma | |
2 | Önermeler Mantığı, Çıkarım | Ders notlarını okuma | |
3 | Gerekçelendirme, Model Kontrolü | Ders notlarını okuma | |
4 | Çözümleme, Birinci Dereceden Mantık | Ders notlarını okuma | |
5 | Olasılık, Bağımsızlık | Ders notlarını okuma | |
6 | Bayes Kuralı, Markov Modelleri | Ders notlarını okuma | |
7 | Yerel Arama, Simüle Edilmiş Tavlama | Ders notlarını okuma | |
8 | Ara Sınav | Sınava hazırlık | |
9 | Doğrusal Programlama, Geri İzleme Araması | Ders notlarını okuma | |
10 | Veri Toplama, Gözetimli Öğrenme | Ders notlarını okuma | |
11 | En Yakın Komşu Sınıflandırması, Perceptron Öğrenmesi | Ders notlarını okuma | |
12 | Destek Vektör Makineleri, Regresyon, Kayıp Fonksiyonları | Ders notlarını okuma | |
13 | Aşırı Uyum, Markov Karar Süreçleri, K-Means Kümeleme | Ders notlarını okuma | |
14 | Yapay Sinir Ağları | Ders notlarını okuma | |
15 | Dil, Sözdizimi, Dönüştürücüler | Ders notlarını okuma | |
16 | Yarıyıl Sonu Sınavları | Sınava hazırlık | |
17 | Yarıyıl Sonu Sınavları | Sınava hazırlık |
Öğrenci İş Yükü - AKTS
Çalışmalar | Sayısı | Süresi (Saat) | İş Yükü (Saat) |
---|---|---|---|
Ders ile İlgili Çalışmalar | |||
Ders (Sınav haftaları dahil değildir) | 14 | 3 | 42 |
Sınıf Dışı Ders Çalışma (Ön çalışma, pekiştirme) | 14 | 3 | 42 |
Değerlendirmeler ile İlgili Çalışmalar | |||
Ödev, Proje, Diğer | 0 | 0 | 0 |
Ara Sınavlar (Yazılı, Sözlü, vs.) | 1 | 12 | 12 |
Yarıyıl/Yıl Sonu/Final Sınavı | 1 | 18 | 18 |
Toplam İş Yükü (Saat) | 114 | ||
Toplam İş Yükü / 25 (s) | 4,56 | ||
AKTS | 5 AKTS |